Target detection and imaging on passive bistatic radar systems = Pasif bistatik radar sistemleri üzerinde hedef tespiti ve görüntülenmesi

Available
The embargo period has ended, and this item is now available.

Date

2014

Editor(s)

Advisor

Çetin, A. Enis

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
64
downloads

Series

Abstract

Passive Bistatic Radar (PBR) systems have become more popular in recent years in many research communities and countries. Papers related to PBR systems have increasingly received significant attention in research. There are many target detection methods for PBR system in the literature. This thesis assumes a system scenario based on stereo FM signals as transmitters of opportunity. Ambiguity function (AF) is a function that determines the locations of targets in range-Doppler map turns out to be noisy in practice. This can cause a problem with low SNR-valued targets because they cannot be visible. To solve this problem, compressive sensing (CS) and projection onto the epigraph set of the 1 ball (PES-1) are used to denoise the range-Doppler map. Some CS methods are applied to the system scenario, which are Basis Pursuit (BP), Orthogonal Matching Pursuit (OMP), Compressed Sampling Matching Pursuit (CoSaMP), Iterative Hard Thresholding (IHT). In addition, AF is generally used to determine the similarities between two signals. Therefore, different correlation methods can be also used to compare the surveillance and time delayed frequency shifted replica of the reference signal. Maximal Information Coefficient (MIC), Pearson correlation coefficient, Spearman’s rank correlation coefficient are used for the target detection. This thesis proposes a least squares (LS) based method which outperforms other correlation algorithms in terms of PSNR and SNR. Two LS coefficients are obtained from the real and imaginary parts of predicting the surveillance signal using the modulated reference signal. Norm of LS coefficients exhibit a peak at target locations. The proposed method detects close targets better than the ordinary AF method and decreases the number of sidelobes on multiple FM channels based the PBR system.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type