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ABSTRACT

TARGET DETECTION AND IMAGING ON PASSIVE
BISTATIC RADAR SYSTEMS

Rasim Akın Sevimli

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

September, 2014

Passive Bistatic Radar (PBR) systems have become more popular in recent years

in many research communities and countries. Papers related to PBR systems

have increasingly received significant attention in research. There are many tar-

get detection methods for PBR system in the literature. This thesis assumes a

system scenario based on stereo FM signals as transmitters of opportunity. Am-

biguity function (AF) is a function that determines the locations of targets in

range-Doppler map turns out to be noisy in practice. This can cause a problem

with low SNR-valued targets because they cannot be visible. To solve this prob-

lem, compressive sensing (CS) and projection onto the epigraph set of the `1 ball

(PES-`1) are used to denoise the range-Doppler map. Some CS methods are ap-

plied to the system scenario, which are Basis Pursuit (BP), Orthogonal Matching

Pursuit (OMP), Compressed Sampling Matching Pursuit (CoSaMP), Iterative

Hard Thresholding (IHT). In addition, AF is generally used to determine the

similarities between two signals. Therefore, different correlation methods can be

also used to compare the surveillance and time delayed frequency shifted replica of

the reference signal. Maximal Information Coefficient (MIC), Pearson correlation

coefficient, Spearman’s rank correlation coefficient are used for the target detec-

tion. This thesis proposes a least squares (LS) based method which outperforms

other correlation algorithms in terms of PSNR and SNR. Two LS coefficients are

obtained from the real and imaginary parts of predicting the surveillance signal

using the modulated reference signal. Norm of LS coefficients exhibit a peak at

target locations. The proposed method detects close targets better than the ordi-

nary AF method and decreases the number of sidelobes on multiple FM channels

based the PBR system.
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ÖZET

PASİF BİSTATİK RADAR SİSTEMLERİ ÜZERİNDE
HEDEF TESPİTİ VE GÖRÜNTÜLENMESİ

Rasim Akın Sevimli

Elektrik ve Elektronik Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

Eylül, 2014

Pasif Bistatik Radar (PBR) sistemleri son yıllarda birçok araştırma toplu-

luklarında ve ülkede çok popüler olmuştur. PBR sistemleri ile ilgili makaleler,

araştırmada giderek büyük bir ilgi toplamaktadır. Literatürde, PBR sistemleri

için bir çok hedef tespit metodları bulunmaktadır. Bu tez, ticari kaynaklı vericil-

erden gelen sinyaller olan çift kanallı FM sinyali tabanlı bir sistem senaryosunu

varsaymaktadır. Belirsizlik fonksiyonu (BF), uzaklık-Doppler haritasında hede-

flerin yerlerini saptayan bir fonksiyondur ki pratik olarak gürültülü bir şekilde

gelmektedir. Bu, düşük SNR değerli hedefler için probleme yol açmaktadır

çünkü görünemeyebilirler. Bu problemi çözmek için, sıkıştırılmış algılama (SA)

ve dışbukey maliyet fonksiyonunun epigraf kümesine dikey iz düşümü (PES-`1) al-

goritmaları uzaklık-Doppler haritasını gürültüden arındırmak için kullanılmıştır.

Bazı SA metodları sistem senaryosuna uygulanmıstır ki bunlar Taban Kovalama

(BP), Ortogonal Uyum Kovalama (OMP), Sıkıştırılmış Örneklemeli Uyum Ko-

valama (CoSaMP), Döngülü Sert Eşikleme (IHT)’dir. Ek olarak, BF genel olarak

iki sinyal arasındaki benzerlikleri bulmak için kullanılır. Bu yüzden, farklı il-

inti metodları da tarama sinyali ile kaynak sinyalinin zaman geciktirmeli frekans

kaydırmalı türünü karşılaştırmak için kullanılmıştır. Maksimal Bilgi Katsayıları

(MIC), Pearson ilinti kaysayıları, Spearman’ın düzey ilinti katsayıları, hedef

tespiti için kullanılmıştır. Bu tez, diğer ilinti algoritmalarına göre PSNR ve SNR

bakımından iyi sonuç veren en küçük kareler (LS) tabanlı bir metod önermektedir.

İki en küçük karelerin katsayıları, kaynak sinyaliyle kiplenen tarama sinyalinin

tahmininin gerçel ve sanal kısımları tarafından elde edilir. En küçük kareler

kaysayılarının normu hedef olan yerlerde bir tepe oluşturmaktadır. Önerilen

metod, yakın hedefleri tipik BF’den daha iyi tespit etmektedir ve çoklu FM kanal-

ları tabanlı PBR sistemleri üzerinde yan kulakların sayısını düşürmüştür.
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Chapter 1

Introduction

Bistatic Radar (BR) systems have been studied and developed since the develop-

ment of earliest radars [3]. Before the pulsed waveforms and transmitter/receiver

technology, the first radars had been all bistatic. BR systems were used by many

countries in air defense networks during the early 1930s. For example, the British,

the French, the Soviet Union and the Japanese used BP systems at different plat-

forms. The Germans used them in World War II. After invention of pulsed radars,

bistatic radars became very expensive and less efficient when compared to other

types.

In recent years, Passive Bistatic Radar (PBR) became popular interest due

to the low-cost computing power and digital receiver technology. PBR systems

have been analyzed since the mid 1980s. Because of increasing digitalization

of broadcast, they are heavily under analysis today. Especially, they have been

using TV and FM signals, but many other commercial broadcasts like DVB, DAB

are under investigation to deploy in PBR systems. PBR has also received much

interest in the academic world as well as military communities [4]. In Figure 1.1,

a system block diagram of a PBR system is shown.
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Figure 1.1: A schema for radar and passive bistatic radar systems. Courtesy of
“Chris J. Baker” [1].

Bistatic radars can work either with their own transmitters, which are only

designed for bistatic operation or with transmitters of opportunity, which are de-

signed for other purposes especially for broadcasting purposes. When it is from

a monostatic radar, the bistatic radar is often called a hitchhiker [5]. If it is

provided from non-radar transmission, such as broadcast, communications or ra-

dionavigation signal, the bistatic radar has been called many things including

passive radar [6], passive coherent location [7], parasitic radar [8] and piggy-back

radar [9]. In this thesis, we will study Passive Bistatic Radar (PBR) systems.

In military applications, transmitters of opportunity can be specified as coop-

erative and non-cooperative. Cooperative transmitters are friendly transmitters

and non-cooperative transmitters correspond to hostile transmitters or ordinary

broadcasting systems. Most PBR systems uses non-cooperative transmitters.

PBR is a kind of radar in which the transmitter and the receiver are at separate

locations [10]. While monostatic radar systems have transmitters and receivers

2



at the same location, passive bistatic radar systems have transmitter and receiver

antennas at separate locations. Basically, the idea behind this radar type is that

it does not illuminate the target itself, but uses illuminations by transmitters of

opportunity, which are generally commercial broadcasts [11].

Advantages and disadvantages of PBR systems are listed below:

• Advantages:

– Due to being passive, they are potentially undetectable.

– They may be lower cost compared to ordinary radars because they do

not need a dedicated transmitter.

– They can update the target positions very fast.

– They have the potential ability to detect stealth targets.

– They do not need any specific frequency allocations.

– Possible enhanced Radar Cross Section (RCS) of the target due to

geometrical effects.

• Disadvantages:

– More complex geometry.

– Lack of control over transmitter.

– The technology is relatively immature.

Stealth technology starts to have a big interest in military aircrafts. PBR systems

allow users to detect and track the target piloted and unpiloted stealth systems.

There are many ongoing researches in that area [12]. Even though the target is

a stealth aircraft, the characteristics of omnipresent radio signals enable us the

detection of them. Unlike conventional radar emits the radiation, PBR systems do

not emit radiation. Instead, they analyze radiation reflection from the emitters.

3



1.1 Thesis Outline and Contribution

This thesis starts with giving a background for Passive Bistatic Radar systems

in introduction part. Simulation a system scenario according to given target and

clutter positions and Doppler frequencies is provided with stereo FM signals and

also the detection process of a target by Ambiguity Function (AF) is explained in

Chapter 2. Adaptive algorithms for canceling the clutters and CFAR algorithm

are presented. Afterwards, Compressive Sensing (CS) and PES-`1 method are

described and applied to the PBR systems to denoise the 2D range-Doppler map

in Chapter 3. All methods are compared at the end of the chapter. Finally,

Chapter 4 discusses whether comparison of correlation between surveillance signal

and time delayed frequency shifted replica of reference signal can be used instead

of AF. For this purpose, least squares based new method called Cross-term free

Least Squares (CLS) is proposed in this thesis. It is observed that it is possible to

detect close targets when multichannel based PBR system is used. Simulations

and performance comparisons are also presented.
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Chapter 2

Properties of Passive Bistatic

Radar

In this chapter, we review some properties of passive radar systems. There can

be many targets of which we want to detect both positions and frequencies (ve-

locities) in the environment. The first property of the PBR system is the bistatic

geometry that has many operating characteristics, such as bistatic range, Doppler

frequency, radar cross section (RCS) and range resolution. Therefore, one needs

to understand the bistatic geometry before handling the PBR system. On the

other hand, the bistatic radar equation should be known to predict the perfor-

mance of the PBR system. Since our aim is the detection and imaging of the

PBR system based on some signal processing algorithms, it is important to create

a system scenario. For this reason, we need to decide upon an illumination source

type and simulate it. In this thesis, stereo FM signals generated by the MAT-

LAB computer program are used as transmitters of opportunity. After this step,

surveillance and receiver antennas are defined instead of a receiver antenna, which

provides us surveillance and reference signals. As we consider these surveillance

and reference antennas, targets, clutters located at the Cartesian coordinate sys-

tem we can create a PBR system scenario, whose specifications depend on users.

Therefore, any user can specify the number of targets ands clutters that will be

used in this system scenario.
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2.1 Bistatic Geometry

As the terma ‘bistatic’ implies, the bistatic geometry is based on a pair of trans-

mitter and receiver with different locations. Together with a target and its ve-

locity V , this is illustrated in Figure 2.1. All additional parameters can be found

in Table 2.1.

Transmitter,Tx Receiver, Rx 

 

L 

     

     

V 

 

 

 

   Target 

Constant Range Ellipse 

 

 

Figure 2.1: Illustration of bistatic radar geometry. Bistatic geometry show the
parameters defining the bistatic radar operation in the constant range ellipse
containing the transmitter (Tx), receiver (Rx) and the target with velocity V.
The bistatic triangle lies in the constant range ellipse plane. The distance L
between transmitter and receiver is called baseline range. The angles, θT and
θR are transmitter and receiver looking angles, respectively. The target’s velocity
vector proejcted onto the the plane has magnitude V and aspect angle α. Bistatic
angle is β = θT − θR. Courtesy of “M. Jackson” [2].

The bistatic geometry has some important basic measurements, such as
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Table 2.1: Parameters used in bistatic geometry.

Symbol Meaning
β Bistatic angle
α Velocity aspect angle
R1 Target-receiver distance
R2 Target-transmitter distance
L Baseline range
V Target velocity
θR Receiver looking angle
θT Transmitter looking angle

bistatic range and Doppler frequency. Bistatic range can be defined as a mea-

surement of target positions in the constant range ellipse. This ellipse shown in

Figure 2.1 is centered on a transmitter and a receiver. Let R1/R2 be the dis-

tance between the target and transmitter/receiver. The distance is denoted by

L. Hence we can calculate the target location at the range ellipse as R1 +R2−L.

Since the positions of the transmitter and receiver antennas are specified by users,

L, R1 and R2 can be calculated as follows:

L =
√
|Txx −Rxx|2 + |Txy −Rxy|2

R1 =
√
|Txx − Tax|2 + |Txy − Tay|2

R2 =
√
|Rxx − Tax|2 + |Rxy − Tay|2,

(2.1)

where Txx and Txy are transmitter antenna positions, Rxx and Rxy are receiver

antenna positions, Tax and Tay are target positions respectively in Cartesian

coordinate system.

Another measurement by looking at this geometry is Doppler frequency, which

measures the velocity of targets. The Doppler frequency of the reflected by the

target is calculated as follows:

fB =
1

λ

[
d

dt
(R1 +R2)

]
, (2.2)
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where λ is the wavelength of the signal. This equation shows that Doppler fre-

quency is proportional to the rate of change of the bistatic range. Then, deriva-

tives of R1 and R2,
dR1

dt
and dR2

dt
, can be found by projecting the velocity vector

onto R1 and R2, so we can get the Doppler frequency fB as follows:

fB =
2V

λ
cos(α)cos(β/2). (2.3)

Using Equation 2.3, we can define the term vB as follows:

vB = V cos(α)cos(β/2)), (2.4)

which is called the projected target velocity. Finally, Doppler frequency can be

represented by:

fB =
2vB
λ
. (2.5)

In PBR systems, there is another issue for the bistatic geometry, which is called

Radar Cross Section (RCS). RCS is a function of target size, shape, material and

some kind of its dynamic. Furthermore, we can say that the target detection

and location are dependent on it [13]. This parameter also takes part in the

passive radar equation as discussed in the next section and it is proportional to

the received power. RCS can be regarded as a property of the target reflectivity.

For example, as a stealth aircraft gives a low RCS because of smooth surfaces

and directing the signal to different directions than the source. As opposed to

this, passenger planes a high RCS because of bare material etc. Bistatic radar

cross section equation, σB is defined as follows:

σb =
4πA2

λ2
, (2.6)

where A is the physical cross-sectional area. The angular width of the scattered

signal horizontal or vertical plane is defined as follows:

θb =
λ

d
, (2.7)

where d is the target linear dimension.
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Another important parameter in PBR systems is the range resolution. A

target resolution of the bistatic radar is its capability to separate two targets

which are very close each other in a range. Radar range resolution, 4r can be

approximately found as follows:

4r = c/2B, (2.8)

where B is the bandwidth of the signal. This equation shows that if we increase

the bandwidth of the reference signal, we may have better range resolution. As

we know from Appendix A, a typical FM radio occupies a bandwidth of about

B = 100 kHz, so radar range resolution will be equal to 4r = 1.5 km in our

system.

2.2 Bistatic Radar Equation

In this section, the bistatic radar equation is presented and shown as follows:

Pr = Pt ·
Gt

4πR2
1

· σb ·
Gr

4πR2
2

· λ
2

4π
, (2.9)

where Pr is the received signal power, Pt is the transmit power, Gt is the transmit

antenna gain, Gr is the receive antenna gain, R1 is the transmitter-target distance,

R2 is the target-receiver distance, λ is the radar wavelength.

The bistatic radar equation can be used to predict the performance of the

PBR systems. Each parameter is important to understand how to affect the

performance. In some cases, receivers have inefficient antennas and poor noise

figures. These losses and inefficiencies can be overcome by using high transmit

power. If you increase transmit power, you can get more receive power. To

increase the receiver power, the range between target-receiver and transmitter-

target may be reduced or transmitter and receiver antenna gains may be enlarged.
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2.3 System Scenario

In PBR systems, there are two essential things to create a system scenario. One of

them is the reference signal (direct signal) and the another one is the surveillance

signal. In practice these signals are obtained from reference and surveillance

antennas [6]. Reference and surveillance antennas are represented more general

and shown as a receiver antenna in Figure 2.1. However, they are assumed as

separate antennas for the purpose of the analysis in this thesis. In addition,

there can be some unwanted echoes called as clutters/multipaths in the system

environment. These echoes occur when the transmitting signal is reflected by

objects or obstacles and reach the surveillance antenna after two or more paths.

A lot of examples can be given for these objects, such as houses, cars, ground,

etc. This system environment is illustrated in Figure 2.2.

Figure 2.2: System environment with a surveillance and a reference antenna.

Based on this environment, the reference signal can be modeled as follows:

sref = Arefs(t) + nref (t), (2.10)

where Aref is the complex amplitude, nref is the noise and s(t) is the transmitted
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complex baseband signal. Echoes in the reference antenna are neglected in this

thesis. The complex envelope of the modulated signal has already been generated

in Appendix A. After that, the surveillance signal with the effect of multipaths

and clutters can be modeled by using the complex baseband signal s(t) and it is

presented as follows:

ssurv =

NT∑
m=1

Gms(t− τm)ej2πfdmt + nsurv(t), (2.11)

where Gm is the complex amplitude, τm is the time delay, fdm is the Doppler

frequency. Due to the bistatic geometry described in Section 2.1, the bistatic

range is calculated by computing 4Rbis = R1 +R2−L, so the time delay can be

calculated as follows:

τm =
R1 +R2 − L

c
, (2.12)

where c = 3 × 108 is the speed of light. If we assume to have the information

about system scenario specifications which consist of gain, time delay, Doppler

frequencies of each target and clutters, the position of the transmitter, receiver

antenna and the clutters, it is possible to generate a table with bistatic ranges in

km, Doppler frequencies in Hz and gains in dB of targets. There are a transmitter,

a receiver, 6 targets and 6 clutters whose positions are created randomly in a

coordinate system. Bistatic ranges, Doppler frequencies and gains of these 6

targets are shown in Table 2.2. It is important to know that the Doppler frequency

for clutters are supposed to be “0” because they do not move. The surveillance

signal created by 6 targets and 6 clutters is illustrated in Figure 2.3.

Table 2.2: System specifications for six targets.

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
Bistatic Range (Km) 40,65 51,63 14,14 4,14 23,03 60
Doppler Frequency (Hz) 150 -250 50 300 -150 -300

Gain (dB) 4,1 -3,8 -20,8 -21,1 -21,6 -22,1
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Figure 2.3: The surveillance signal according to the system scenario.

2.4 Ambiguity Function

In this section, the detection process of targets and clutters given in a system

scenario is presented. The target and clutter detection in passive bistatic radar

is based on the evaluation of the range-Doppler cross-section function called Am-

biguity Function (AF). This function can be implemented with the Fast Fourier

Transform (FFT) operation. Surveillance and reference signals generated at pre-

vious sections are applied to plot the range-Doppler map. All calculations are

performed in MATLAB R2013b (8.2.0.701) 64-bit computer program.

Whichever waveform is used, it is an important requirement to extract the best

information about the target from the received signal as possible [14]. Surveillance

and reference signals are applied to the matched filtering [15]. Then, the output

of the matched filter at time T is given by

ξ(T ) =

∫ T

0

ssurv(t)s
∗
ref (t− τ)e−j2πfdmt. (2.13)
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Instead of Eq. 2.13, the output of the matched filter can be generalized and ex-

pressed as a function of τ and fdm, which corresponds to the range and Doppler

frequency of the target. In addition, the matched filter is often implemented

on digital computers in practice, so ssurv(t) and sref (t) signals are converted to

discrete signals ssurv[n] and sref [n], respectively. In practice, AF is calculated

in terms of range (time) bins and Doppler bins. Range bins are obtained by

l = τ.fs, which explains how much the reference signal will be delayed. Further-

more, p = fdm.NTs is the Doppler bin representing the Doppler frequency of the

backscattered echo from the target. The target velocity can be calculated using

v = λ.fdm. Lastly, the discrete implementation of the 2D ambiguity function is

given as follows:

ξ[l, p] =
N−1∑
i=0

ssurv[i]s
∗
sref [i− l]e−

j2πip
N , (2.14)

where N is the number of samples, l is the bistatic range bin and p is the Doppler

bin. This equation is demonstrated in Figure 2.4 according to the system scenario

shown in Table 2.2. If we recall bl[i] = ssurv[i]s
∗
ref [i− l], AF can be implemented

by computing the FFT of bl[i]. AF can be rearranged in the following equation:

ξ[l, p] =
N−1∑
i=0

bl[i]e
− j2πip

N ,

l = 0, 1, ..., L, p = 0, 1, ..., N − 1.

(2.15)

In this thesis , the sampling frequency, fs and the integration time are 2 × 105

Hz and 1 sec., respectively, so the length of surveillance and reference signals is

2× 105. This discrete-time signal is decimated in time and the length of signals

is reduced to N = 4096. After this point, the Doppler frequency axis is focused

between −500 and 500 Hz to show targets clearly. The values for L and p are

chosen as L = 150 and p = −500, ..., 500. The reason for choosing L = 150

is that, PBR systems use stereo FM signals to detect and track targets in the

range of approximately 250 km [16]. We know that the bistatic range is equal to

4Rbis = lTsc. Since the bistatic range is 250 km, the maximum range bin should

be approximately 250
Tsc
∼= 150 km. In addition, gains of targets are normalized
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between 0 and 1. We have used 6 clutters, so it is likely to see clutters at the zero

frequency with different bistatic ranges. In Section 2.5, different adaptive filter

algorithms are applied to cancel the clutter effect.

(a)

(b)
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(c)

(d)

Figure 2.4: Plotting the 6 target positions according to system scenario: (a) 3D
plot; (b) Doppler frequency plot; (c) Bistatic range plot; (d) view from the top.

2.5 Clutter Cancellation and Detection of a Tar-

get with CFAR algorihtm

In any bistatic radar system the first step is the clutter removal. As can be

seen in Section 2.4, the range-Doppler map can have many clutter/multipath

echoes at zero Doppler frequency. This is a really important problem because it

is sometimes impossible to see if there are targets near to zero Doppler frequency

or not. This means that the clutter can mask potential targets. Therefore, we

prefer to apply adaptive filters, such as least mean squares (LMS) and recursive

least squares (RLS) to cancel the clutter in this thesis. Basically, the system
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flow chart of the bistatic radar target detection system is shown in Figure 2.5.

First, adaptive filters are applied to reference and surveillance signals and then

the range-Doppler map is computed using the DFT of the ambiguity function.

Figure 2.5: System flow chart.

In addition, constant false alarm rate (CFAR) algorithm is applied to our

system. Normally, we may have certain noise level in range-Doppler map, so

this algorithm tries to find out the noise level and low SNR-valued targets more

clearly [17].

2.5.1 Adaptive Filters

Adaptive filters are used in many signal processing applications [18]. One of the

application is to cancel the clutter effect on passive bistatic radar systems. As

known from the previous section, the surveillance signal is obtained by time-

delayed frequency shifted replica of the reference signal. Ambiguity function

most probably comes out with many clutters/multipaths peaks at zero Doppler

frequencies as shown in Figure 2.4. These kind of peaks may mask the peaks of

actual target. This is an important problem in real life applications. Although

there are some techniques mentioned in [19] and [20], we used adaptive filter

algorithms, such as least mean square (LMS) and recursive least square (RLS)

to remove the clutter. Basically, our main purpose of using adaptive filters in

PBR systems is to simulate the reference signal to the surveillance signal so

that clutters/multipaths may be canceled at zero-Doppler frequency. For both

algorithms, the schematic filter diagram is shown in Figure 2.6. In general, the

error signal is to adjust the coefficients of the adaptive filters [21] and calculated

as follows:

e[n] = ssurv[n]− y[n] (2.16)
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Figure 2.6: General representation of the adaptive filter used in PBR.

In this section, a brief description of the considered adaptive algorithms is

presented to cancel clutter/multipath effects. The system scenario is revised by

using adaptive filter algorithms and plotted. Lastly, their efficiencies are com-

pared according to convergence time.

2.5.1.1 Least Mean Squares (LMS)

Least mean squares (LMS) algorithm uses a stochastic gradient algorithm in that

the filter is adapted based on the error. The idea behind this approach is to

minimize the least mean square of adaptive filter output [22]. The error of the

filter elms[n] is given by

elms[n] = ssurv[n]− wHlmssref [n], (2.17)

where wlms is the weight vector of the filter at n’th iteration. For this case, the

weight vector update equation can be displayed as follows:

wlms[n+ 1] = wlms[n] + µe∗lms[n]sref [n], (2.18)
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where wlms[n] is the current weight value vector, wlms[n + 1] is the next weight

value vector and µ is the step-size of the algorithm. Since µ affects the rate of

convergence and the accuracy of the algorithm, it controls the performance of

the algorithm. The step size µ must be a positive number. If µ is large, the

convergence speed is fast, but filtering may not be proper. If µ is small, the filter

gives slow response, but filtering is proper and gives good results. Additionally,

filter order, p is taken as 50 in our simulations. According to these specifications,

the error in the filter and time are plotted in Figure 2.7. In this figure, the number

of samples and integration time are chosen as 2× 105 and 1 sec., respectively.
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Figure 2.7: Filter output vs time for LMS.

When we investigate the output, LMS adopts the approximate correct output

in 800 samples (0.004 sec.). Using the same system scenario, the range-Doppler

map is plotted in Figure 2.8. As compared to Figure 2.4(a), clutters are canceled

successfully. Running time took about 1.62 sec.
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(a)

(b)

Figure 2.8: Illustration of range-Doppler map with LMS adaptive filter, µ =
0.001, p = 50: (a) 3D plot; (b) view from the top.

2.5.1.2 Recursive Least Squares (RLS)

Recursive Least Squares (RLS) algorithm is a recursive version of the least squares

(LS) algorithm. This algorithm recursively finds the filter coefficients that mini-

mize the LS cost function relating to the input signal [23]. Even though RLS is

known for its good performance, it has increased computational complexity and

19



some stability problems. The error of the filter erls[n] is given by

erls[n] = ssurv[n]− wHrlssref [n], (2.19)

where erls[n] is the weight vector. To update the weight vector, the following

expression is used:

wrls[n+ 1] = wrls[n] + k[n]e∗lms[n], (2.20)

where k[n] is the gain factor and calculated as follows:

k[n] =
P [n− 1]sref [n]

λ+ sTref [n]P [n]sref [n]
such that,

P [n+ 1] = λ−1P [n]− k[n]sTrefλ
−1P [n], (2.21)

where λ is the forgetting factor which determines the convergence rate of the

algorithm. Filter order and forgetting factor are chosen as p = 50 and λ = 0.7.

The relation between the output error of filter and time are shown in Figure 2.9.

If we consider the convergence time, RLS adopts the approximate correct output

in 100 samples (5 × 10−4 sec.). The range-Doppler map is shown in Figure 2.10

according to the implementation of RLS on system scenario. In this adaptive filter

type, running time took 20.75 sec. As a result, LMS adaptive filter is shown that

it is much faster than RLS filter, so LMS filter is applied to the 2D range-Doppler

map to cancel the clutter for whole calculations in this thesis.
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Figure 2.9: Filter output vs time for RLS.

20



(a)

(b)

Figure 2.10: Illustration of range-Doppler map with RLS adaptive filter, λ = 0.7,
p = 50 in view of: (a) 3D plot; (b) view from the top.

2.5.2 Constant False Alarm Rate (CFAR)

Constant False Alarm Rate (CFAR) algorithm is an adaptive algorithm used in

radar systems to detect targets against noise [24]. The idea behind CFAR algo-

rithm is to determine the adaptive threshold and indicate the target’s positions

at 0 and 1. If the determined threshold is low, more targets are detected with

increased numbers of false alarms. If the threshold is high, some targets may
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not be detected with low false alarms. For many cases, this threshold is changed

according to probability of false alarm rate (Pfa) adaptively [25].

In many CFAR detection applications, the noise floor around the cell under

test (CUT) is estimated and then the threshold level is calculated. For this reason,

a block of cells is considered and average power level is calculated. However, we

need to avoid corruption of the power from the CUT, so some cells guard cells

are ignored. Average power level is estimated by calculating the remaining cells

called as training cells. A target can be detected if CUT power is higher than

the average power level of training cells. This approach is called as cell-averaging

CFAR (CA-CFAR) illustrated in Figure 2.11.

Figure 2.11: The block diagram of the CA-CFAR algorithm.

Suppose that the detection threshold T , is given by

T = αPN , (2.22)
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where α is the threshold factor and PN is the estimated noise estimate. PN can

be calculated by averaging the training cells with size N . Another variable, the

threshold factor is obtained as follows:

α = N(P
−1/N
fa − 1), (2.23)

where Pfa is the desired probability of false alarm rate.

After a brief background information, CFAR algorithm is applied and tested

using it on PBR systems. Although there are many ways to implement the

CFAR algorithm, we used MATLAB keyword, Phased.CFARDetector because

of speed and efficiency. In our tests, different training and guard cell sizes

and Pfa values are used. In Figures 2.12, 2.13, 2.14 and 2.15, range-Doppler

maps with training cell sizes 10, 100, 10, 20, guard cell sizes 10, 10, 10, 10 and

Pfa=10−4, 10−4, 10−5, 10−7 are shown, respectively. Here, red squared points show

actual target positions and other points show false alarm positions.
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(a)

(b)

Figure 2.12: Range-Doppler map for CFAR algorithm with training cell size 10,
guard cell size 10, Pfa = 10−4: (a) 3D plot; (b) view from the top.
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(a)

(b)

Figure 2.13: Range-Doppler map for CFAR algorithm with training cell size 100,
guard cell size 10, Pfa = 10−4: (a) 3D plot; (b) view from the top.
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(a)

(b)

Figure 2.14: Range-Doppler map for CFAR algorithm with training cell size 10,
guard cell size 10, Pfa = 10−5: (a) 3D plot; (b) view from the top.
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(a)

(b)

Figure 2.15: Range-Doppler map for CFAR algorithm with training cell size 20,
guard cell size 10, Pfa = 10−7: (a) 3D plot; (b) view from the top.

Although more simulations can be done with different probability of false

alarm rates, training and guard cells, these plots are sufficient to comment on the

relationship between CFAR and PBR system. As can be seen from Figure 2.15,

all targets are detected successfully without any false alarms even though there

are false alarms in Figures 2.12, 2.13 and 2.14, so we can say that the best results

are observed with lower Pfa values. In addition, 6 targets are detected for all

of them. True target detection performance increases as the probability of false

alarm decreases because the system scenario has low SNR-valued targets, which

can be regarded as noise. Moreover, one can understand, by comparing Figures

2.12 and 2.13, that the detection performance also increases if we increase the
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training cell size.

2.6 Summary

In this chapter, some properties of passive bistatic radar are introduced. The

bistatic geometry is shown schematically and the bistatic range, Doppler fre-

quency, radar cross section (RCS) and range resolution are explained in detail.

Bistatic radar equation is given to predict the performance. After giving back-

ground information, a system scenario is given as an example with some targets

and clutters specifications, such as the bistatic range, the Doppler frequency and

the gain. Then, this scenario is implemented by using the ambiguity function and

plotted. By the way, stereo FM signals are created for commercial broadcast and

described in detail in Appendix A. Adaptive filter theory is also reviewed. Adap-

tive filters are applied to cancel clutters/multipath effects that form unwanted

peak/s at zero Doppler frequency in the range-Doppler map. For this purpose,

LMS and RLS adaptive filters are applied and compared in performances. LMS

method is the best method according to performance comparasion and used in

all parts of this thesis. The detection of targets can be done by using the CFAR

algorithm with different specifications. CFAR algorithm is also simulated within

the PBR system scenario and performance results are presented.
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Chapter 3

Denoising for Range-Doppler

Target Detection Within

Compressive Sensing Framework

and PES-`1

Compressive Sensing (CS) theory has become a relatively recent research area

used in various signal processing applications, such as photography [26], medical

imagining [27] and sensor networks [28,29]. One of the applications is radar target

detection [30–33]. CS approach can be used in radar signal processing because of

inherently sparse nature of the range-Doppler domain [34]. As indicated in [35],

CS is applied to pulse compression, radar imaging and DoA estimation. Above

referenced papers describe applications of CS theory to active radar systems.

In many cases, the ambiguity function turns out to be very noisy. In this chap-

ter, the ambiguity function is denoised by using the CS methods, such as Basis

Pursuit (BP), Orthogonal Matching Pursuit (OMP) [36], Compressive Sampling

Matched Pursuit (CoSaMP) [37], Iterative Hard Thresholding (IHT) [38]. Also,

a new denoising method based on the projection onto the epigraph set of the `1

ball is developed for this purpose [39,40].
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3.1 Compressive Sensing

The main purpose of this section is to review the compressive sensing framework

and describe how it can be implemented in PBR systems. Many review articles

in the literature can be found about CS in [41].

According to Nyquist-Shannon theorem, it is possible to reconstruct a band-

limited signal, if it is sampled with a sampling frequency twice the highest fre-

quency of the signal. The CS theory researchers claim that the sampling with a

Nyquist rate is not necessary, if the signal is sparse in some transform domain.

It is possible to represent ”big signal data” as small data in a subspace or a

set in the transform domain. This is also the main idea in most digital wave-

form coding schemes. Recent image and signal denoising methods also assume

the sparse nature of the signal in some transform domain such as Fourier, DCT

and/or wavelet domains [42,43]. As a solution, CS reconstruction algorithms are

developed for sparse signal reconstruction problems. The same set of algorithms

can also be used in signal denoising. Compressive sensing theory enables us the

reconstruction of a sparse signal from a small number of measurements.

Transform domain representation of the CS framework is reviewed below.

Suppose that we have a one-dimensional, discrete-time signal v, which is the

N ×1 column vector. Any signal can be constructed from its N ×1 basis vectors.

Using the N ×N basis matrix, Ψ = [ψ1|ψ2|...|ψN ], the signal v can be formed as

follows:

v =
N∑
i=1

xiψi or v = Ψx, (3.1)

where Ψ ∈ CN×N is a non-singular, and generally orthonormal transform domain,

x is the N × 1 column vector of weighting coefficients and v is the non-sparse

signal in domain Ψ. Clearly, signals v and x are different representations of the

same signal, with v is in the time domain and x is in the Ψ domain. Using

non-singularity property of Ψ, the sampled signal can be calculated as follows:

xi = ψHi v, (3.2)
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where .H denotes the Hermitian transpose operation. Furthermore, if it is enough

to represent the signal v with K basis vectors for K << N , the signal v is called

K-sparse. It means that K of si’s are nonzero and rest of them, N −K are zero.

To illustrate the transform domain representation, let us give a simple exam-

ple. Suppose that time-sampled signal v ∈ <512 as shown in Figure 3.1(a). All

elements are non-zero in the time domain representation. The basis matrix Ψ is

selected Inverse Discrete Fourier Transform (IDFT) matrix with 512 × 512 size

because the time-sampled signal has 512 samples. IDFT matrix can be obtained

by calculating the IDFT of identity matrix and it is given by

Ψl,p =
1

N2

N−1∑
nx=0

N−1∑
ny=0

IN(nx, ny)e
j2π[nxl+nyp]/N , (3.3)

where IN(nx, ny) represents the identity matrix with N ×N size and Ψl,p is the

(l,p)’th element of the matrix Ψ. The sparse signal x in domain Ψ is shown in

Figure 3.1(b). The sparsity level is selected as 25, so there should be 25 peaks in

the Fourier domain.
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Figure 3.1: (a) Time-sampled signal v; (b) the sparse signal x in domain Ψ .

As can be seen from Figure 3.1, it is possible to represent a time-sampled

signal v with length 512 in the other domain Ψ as a sparse signal x with 25

coefficients. Then, it comes up with an important result that a time-sampled data

with length 512 can be compressed to 25 sparse coefficients in another domain

for our example. This type of property leads both low computational cost and

high efficiency.

Up to now, the transform domain representation is introduced, but the basic

idea has not been defined. The main purpose of the CS framework is to represent

a sparse signal in some known basis by using a small number set of measurements.

If we define the measurement matrix as Φ ∈ CM×N , the observation signal y is
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calculated instead of time-sampled signal v as follows:

y = Φv, (3.4)

where Φ is a M×N measurement matrix containing zero-mean Gaussian random

numbers. The number of random measurements M is smaller than N . As a result,

K-sparse vector v is expressed as follows:

y = Θ x = Φ Ψ x, (3.5)

where Θ = Φ Ψ is a matrix with M ×N size as Θ ∈ CM×N . In CS reconstruction

algorithms, the main purpose is to find the sparse vector x and this vector can

be reconstructed by using the vector y provided that K < M < N . For K-sparse

signals, this problem can be solved as follows:

x̂ = argmin ‖ x ‖1 such that y = Θ x. (3.6)

In sparsity based denoising methods there is no measurement matrix and the

following problem or related problems are solved:

min
w
‖ w− v ‖22 +λ ‖ x ‖1, (3.7)

where v is the observed noisy signal and x is the transform of w. Another related

problem is

min
w
‖ w− v ‖22 +λ ‖ w ‖1 . (3.8)

In Eq. 3.6, 3.7 and 3.8, the minimization of the `1 norm is the common feature.

Because of the `1 norm, the solution w∗ turns out to be sparse depending on the

nature of the problem in some domain.

Many algorithms have been developed for the above optimization problems.

It has beens shown that minimizing the `1 norm forces small amplitude coeffi-

cients of x vector to zero and it leads to a sparse solution. As pointed out in

[44], measurement is not adaptive and does not change according to signal v.

There are some problems with that. One of the problems is to create a stable
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measurement matrix. To construct the Θ matrix, matrices Φ and Ψ must be

maximum incoherent, which requires that rows of the matrix Φ must not be rep-

resented sparsely as the columns of Ψ. Another problem is to design a suitable

reconstruction method for optimization of the signal. For this problem, many

algorithms have been developed. These algorithms can be based on `0, `1 and

`2 norm reconstruction. It is shown in [30] that `0 and `2 norm reconstruction

is not suitable to find K -sparse solution, but optimization based on `1 norm is

shown to recover K -sparse signals exactly. Unlike convex optimization methods,

there are also greedy techniques to find the optimal solution. In the following

section, the ambiguity function is denoised using the CS approach with different

reconstruction methods for the range-Doppler radar target detection.

3.2 Reconstruction Algorithms

This section describes how to implement the CS algorithm in PBR systems. It

also describes what kind of reconstruction algorithms should be used for denoising

the range-Doppler map. For this purpose, there is a need to recall Section 2.4,

which states that the correlation of surveillance and reference signals bl[i] =

ssurv[i]s
∗
ref [i− l], l = 0, 1, ...L = 150, i = 0, 1, ...N − 1 = 4095 may determine the

range and the speed of the target(s). We know that the DFT of the correlations

bl[i] provides the range-Doppler matrix ξ[l, p] which should be sparse in Fourier

domain. We expect to see peaks in the range-Doppler map only at the locations of

the target(s). Therefore, we can denoise the range-Doppler map using the state-

of-the-art denoising algorithms using the sparsity assumption. We can assume

both the ambiguity function ξ[l, p] or bl[i] as the measured ”signal” in a typical

PBR system and pose `1 optimization problems based on them. The relation

between ξ[l, p] and bl[i] can be expressed as follows:

bl = Ψ ξl , l = 0, 1, ..., L. , (3.9)
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where the vector ξl is the l’th row of ξ[l, p] and its size is N = 4096 in this thesis.

We can define an observation signal yl which is calculated as follows:

yl = Φ bl, (3.10)

yl = Θ ξl = Φ Ψ ξl, (3.11)

where Θ is a matrix of size M × N . Therefore, the observation signal yl is of

size M , which is smaller than N . In this chapter, several M values are selected

and the CS problem is posed as reconstruction of ξ[l, p] from yl vectors. Since

sparsity assumption is used, denoising is also achieved during the CS reconstruc-

tion. Another approach is to denoise ξl vectors without using any measurement

matrix. In this case, the following problem is solved:

min
w
‖ wl − ξl ‖22 +λ ‖ wl ‖1 . (3.12)

The solution w∗l will be the denoised vector. Both the complex and magnitude

of ξl can be used. There are many stable reconstruction methods based on `1

minimization for noisy measurements in the literature [45, 46]. In this thesis,

basis pursuit (BP), orthogonal matching pursuit (OMP), compressive sampling

matched pursuit (CoSaMP), iterative hard thresholding (IHT) are used. In ad-

dition, the PES-`1 method is proposed to denoise the range-Doppler map.

3.2.1 Basis Pursuit

Basis Pursuit (BP) solves the optimization problem 3.13 and searches the best

representation of a signal by minimizing the `1 norm of the vector ξl. The main

goal is to find the sparsest possible representation of the vector ξl. Therefore,

each observation vector, yl is used in the following minimization problem:

min ‖ ξl ‖1 such that yl = Θ ξl. (3.13)

The above CS reconstruction problem is solved for each row of the AF function

for the values of l = 0, 1, ..., L. To deal with noisy data, a related approach
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called basis pursuit denoising (BPDN) can be also used to solve mathematical

optimization problem of the form:

min ‖ yl −Θξl ‖22 +λ ‖ ξl ‖1, (3.14)

where λ is the parameter determining the sparsity level of the solution. It is clear

that this problem becomes a least square problems for λ = 0. In our experiments,

different λ values are used and results for various λ are presented.

3.2.2 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a greedy algorithm that also determines

a sparse solution to the CS problem. It is an extension of the Matching Pursuit

(MP) algorithm. Advantages of this algorithm are its speed and computational

efficiency. It is also used at the output of the matched filter to find the strongest

target in [47]. OMP constructs an approximation with an iteration process. Given

a compressed observation vector yl for l = 0, 1, ..., L, the locally optimum solution

is tried to be calculated at each iteration. To do this, it searches which columns

of Θ contributing most to the observation vector yl, which means that residual

vector r should resemble the column vector in Θ [48]. The residual vector is

taken as the observation vector r = yl at the first iteration. It is hoped that

local optimum solutions are going to result the global optimum solutions, but

this algorithm does not guarantee the global optimum. During each iteration,

columns of Θ are picked and correlated with the the resdiual r and this correlation

is subtracted form the previously selected vector rt−1 at each iteration. OMP

algorithm keeps on iterating until the norm of resulting residual smaller than a

some halting threshold. After M iterations, this algorithm finds a set of columns

from the basis set representing the vector ξl. OMP uses a least-squares at each

iteration to update residual vector r. Lastly, total computational complexity

increases linearly as K increases [36].
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3.2.3 Compressed Sampling Matching Pursuit

Compressive Sampling Matched Pursuit (CoSaMP) is an iterative greedy algo-

rithm that recovers a compressible signal from its noisy samples [37]. It is efficient

for some optimization problems. CoSaMP is one of the latest algorithms based

on OMP. It also considers a number of vectors to generate approximation at each

step. It requires a measurement vector Θ, observation matrix yl and a sparsity

level estimation (K). Different form OMP, CoSaMP does not search the max-

imum correlation. It takes 2K dictionary vectors with the largest normalized

inner products. After calculating intersection between current solution set and

a set of 2K column vectors of Θ, the solution is obtained with least-squares.

Then, CoSaMP iterates until the stopping criteria is satisfied. CoSaMP algo-

rithm changes the solution vector at each iteration, so this property enables to

correct previous errors.

3.2.4 Iterative Hard Thresholding

Iterative hard thresholding (IHT) algorithm is a simple iterative method [38]. It

can be considered that it is a different algorithm from the previous ones. This

algorithm is not based on OMP. The convergence of this algorithm is guaranteed

in [49] under condition that `2 norm of matrix Θ smaller than 1 (‖ Θ ‖2< 1). IHT

is supposed to exhibit similar performance with CoSaMP [48]. Some properties

of this algorithm are as follows: (i) it is robust to observation noise and it(ii)

succeeds with a minimum number of observations. Basically, IHT algorithm uses

the following update equation:

ξl,t+1 = Hn(ξl,t + ΘT (yl −Θξl,t)) (3.15)

where Hn(.) denotes the operator that reduces the value of `0 at each iteration

for n sparse entries. First solution vector ξl,0 is taken as zero. The Eq. 3.15 is

repeated until a threshold is satisfied.
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3.3 Projection Onto the Epigraph Set of the `1

ball (PES-`1)

Projections Onto Epigraph Set Of A Convex Cost Function (PES-`1) is a new

signal processing framework described in [39, 40]. In this new denoising method,

each row of the magnitude of AF data: ξl[p] = |ξ[l, p]| is first filtered by a low-

pass filter with cut-off π/4 (normalized angular frequency) and subtracted from

the original data, producing a high-pass filtered version ξhigh[p]. Let the low-pass

filtered version be ξlow[p]. The signal ξhigh[p] is projected onto the epigraph set of

`1-norm function. The output of the projection operation ξout[p] is combined with

the low-pass signal ξlow[p] to obtain the denoised version of |ξ[l, p]| as discussed

in [50–52]. This denoising method takes advantage of the sparse nature of the

data and it does not require any measurement matrix. The block diagram of the

denoising structure is shown in Figure 3.2.

Figure 3.2: The block diagram of PES-`1 algorithm.

In PES-`1 block, the signal vhigh[p] is processed by projection onto epigraph

set of `1-ball as said before and the projected signal vout[p] is obtained after that.

Firstly, [vhigh[p], 0]T is projected onto the nearest hyperplane of the epigraph set

shown as follows:
K−1∑
p=0

sign(vhigh[p])vhigh[p]− z = 0, (3.16)
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where z is the boundary condition of the `1-ball expressed as follows:

K−1∑
p=0

|vhigh[p]| ≤ z. (3.17)

The projection signal vout[p] can be calculated as follows:

vout[p] = vhigh[p]−
∑K−1

p=0 sign(vhigh[p])vhigh[p]

K + 1
sign(vhigh[p]) (3.18)

3.4 Simulation Results

This section presents the simulation results of each method mentioned above. In

Figures 3.4,. . . ,3.15, range-Doppler maps based on same PBR system scenario

with 6 targets and 6 clutters mentioned in Table 2.2 are denoised with basis pur-

suit (BP), orthogonal matching pursuit (OMP), compressive sampling matched

pursuit (CoSaMP), iterative hard thresholding (IHT) with different M values

for each and the PES-`1 method, respectively. BP algorithm needs λ values for

BPDN, so λ is chosen as 0.1, 1,and 5 in this thesis. As known from previous

sections, sparsity levels should be estimated for OMP, CoSaMP and IHT meth-

ods, so the estimated sparsity level is K = 10 for the given plots. In addition to

K = 10, different sparsity levels, such as K = 50 and K = 100 are calculated.

PSNR (dB), SNR (dB), time (sec.) values of each method with sparsity levels

and λ values and the number of the detected targets are presented in Tables 3.1

and 3.2.

Tables 3.1 and 3.2 show us PES-`1 method outperforms CS algorithms with

49, 15 dB PSNR value and 7, 68 dB SNR value. As can be seen, higher scores

in terms of PSNR and SNR are generally obtained for M = 400 and higher

number of measurements. Even though M values should be smaller than N

value, M = 4096 condition is also calculated because our aim is to use the CS

idea for denoising in this thesis. According to ”Time” column, PES-`1 is one of the

fastest methods with 6, 70 sec. However, there can be many possible scenarios to

compare the performances of these methods, so measurements between %1-%70
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of measurements are calculated for four methods with K = 10, 50, 100 sparsity

level estimations and shown in Figure 3.3. The red dashed line points the PES-`1

method for both of them. As can be observed, PES-`1 still outperforms the CS

algorithms, but not all. In general, OMP, CoSaMP and IHT methods have higher

PSNR and SNR values for K = 10 after %10 of measurements as compared to

PES-`1 method.
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Figure 3.3: (a) PSNR; and (b) SNR values of CS methods and PES-`1 in the
range of %1 - %70 measurements.
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Table 3.1: PSNR, SNR, time values for reconstruction (Time-1), time values
for matrix multiplications (Time-2) and the number of the detected targets of
methods mentioned above for M = 40, 400, 1000.

Measurements Methods PSNR
(dB)

SNR
(dB)

Time-
1
(sec.)

Time-
2
(sec.)

No. of de-
tected tar-
gets

M=40

BP (λ = 0) 48,30 4,24 223,01

17,69

2
BP (λ = 0.1) 48,33 4,34 145,74 2
BP (λ = 1) 48,00 3,36 116,40 2
BP (λ = 5) 48,39 4,53 99,51 2
OMP (K = 10) 45,58 -1,43 6,25 2
CoSaMP (K = 10) 48,78 5,94 22,76 2
IHT (K = 10) 47,01 1,08 5,39 2

M=400

BP (λ = 0) 47,85 2,97 2000,30

108,34

3
BP (λ = 0.1) 48,81 2,88 1215,2 4
BP (λ = 1) 47,80 2,84 690,60 5
BP (λ = 5) 47,63 3,09 3147,7 5
OMP (K = 10) 48,73 5,74 37,70 4
OMP (K = 50) 46,44 -0.01 38,37 2
OMP (K = 100) 45,09 -2,19 1969,5 2
CoSaMP (K = 10) 48,78 5,92 17,67 3
CoSaMP (K = 50) 46,75 0,57 93,54 2
CoSaMP (K = 100) 47,26 1,59 416,36 5
IHT (K = 10) 49,03 7,03 6,82 3
IHT (K = 50) 47,34 1,77 38,98 2
IHT (K = 100) 46,33 -0,20 79,80 2

M=1000

BP (λ = 0) 47,22 1,51 4787,7

236,43

6
BP (λ = 0.1) 47,28 1,64 2177,1 6
BP (λ = 1) 47,30 1,67 1878,5 6
BP (λ = 5) 47,30 1,66 1041,1 6
OMP (K = 10) 49,37 9,10 13,71 5
OMP (K = 50) 48,00 3,34 79,64 6
OMP (K = 100) 46,91 0,89 209,06 5
CoSaMP (K = 10) 49,33 8,81 11,87 5
CoSaMP (K = 50) 48,02 3,41 42,35 5
CoSaMP (K = 100) 46,98 1,01 236,36 5
IHT (K = 10) 49,41 9,43 9,04 5
IHT (K = 50) 48,42 4,62 12,88 5
IHT (K = 100) 48,32 4,31 30,61 6

PES-`1 49,15 7,68 6,70 6

FFT based AF 45,51 -1,53 3,87 6
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Table 3.2: PSNR, SNR, time values for reconstruction (Time-1), time values
for matrix multiplications (Time-2) and the number of the detected targets of
methods mentioned above for M = 2000, 4096.

Measurements Methods PSNR
(dB)

SNR
(dB)

Time-
1
(sec.)

Time-
2
(sec.)

No. of de-
tected tar-
gets

M=2000

BP (λ = 0) 46,62 0.33 23875

446,99

6
BP (λ = 0.1) 46,62 0,32 6763,9 6
BP (λ = 1) 46,63 0,34 3098,2 6
BP (λ = 5) 46,66 0,40 1916,5 6
OMP (K = 10) 49,62 11,48 60,84 6
OMP (K = 50) 48,63 5,35 270,67 6
OMP (K = 100) 47,90 3,09 757,07 6
CoSaMP (K = 10) 49,45 9,72 39,87 6
CoSaMP (K = 50) 48,64 5,39 123,23 6
CoSaMP (K = 100) 47,93 3,19 368,92 6
IHT (K = 10) 49,64 11,61 21,96 6
IHT (K = 50) 48,79 5,97 122,88 6
IHT (K = 100) 48,20 3,93 153,05 6

M=4096

BP (λ = 0) 49,9 17,75 18,95

977,76

6
BP (λ = 0.1) 49,91 18,17 17,17 6
BP (λ = 1) 49,91 17,99 21,93 6
BP (λ = 5) 49,92 18,49 18,83 6
OMP (K = 10) 49,72 12,92 53,49 6
OMP (K = 50) 49,07 7,25 551,37 6
OMP (K = 100) 48,50 4,90 1289,1 6
CoSaMP (K = 10) 49,73 12,95 39,74 6
CoSaMP (K = 50) 49,07 7,28 341,93 6
CoSaMP (K = 100) 48,53 4,99 566,57 6
IHT (K = 10) 49,74 13,13 21,99 6
IHT (K = 50) 49,15 7,70 69,11 6
IHT (K = 100) 48,71 5,65 39,79 6

PES-`1 49,15 7,68 6,70 6

FFT based AF 45,51 -1,53 3,87 6
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(a)

(b)

(c)

Figure 3.4: Simulation result for BP with M = 40 and λ = 0: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.5: Simulation result for BP with M = 400 and λ = 0: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.6: Simulation result for BP with M = 2000 and λ = 0: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.7: Simulation result for OMP with M = 40 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.8: Simulation result for OMP with M = 400 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.9: Simulation result for OMP with M = 2000 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.10: Simulation result for CoSaMP with M = 40 and K = 10: (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.11: Simulation result for CoSaMP with M = 400 and K = 10: (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.12: Simulation result for CoSaMP with M = 2000 and K = 10: (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.13: Simulation result for IHT with M = 40 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.14: Simulation result for IHT with M = 400 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.15: Simulation result for IHT with M = 2000 and K = 10: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 3.16: Simulation result for PES-`1: (a) 3D plot; (b) Doppler frequency
plot; (c) view from the top.
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3.5 Summary

In this section, compressive sensing based denoising and PES-`1 methods are

introduced. After brief background information, BP, OMP, CoSaMP and IHT

methods with different measurement values and sparsity levels are applied to the

given CS problem. Results in terms of PSNR (dB), SNR (dB), time (sec.) and

the number of the detected targets are given in a table and compared within a

graph. In addition, some range-Doppler maps for M = 40, 400, 1000, 2000, 4096

of results given that table is plotted. It is shown that the proposed algorithm,

PES-`1 mostly outperforms the other CS based denoising methods for many mea-

surements and sparsity level estimations.
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Chapter 4

New Correlation Algorithm For

Passive Radar Target Detection

Specifying relationships between two variables has received a renewed interest in

signal processing and science. There are many ways to do it. The most well-known

function is the correlation coefficient and/or function. Correlation is a measure of

similarity between two random variables or two sets of data. It refers any class of

statistical relationships of two signals. If somebody wants to compare correlation

between two signals or variables, correlation coefficients determine how much

they effect each other. There are many numerous correlation algorithms used

in signal processing applications [53–58]. One of the applications is matched

filtering. The matched filter is obtained by correlating two signals. One of these

signals is a known signal and the second one is an unknown signal. We know

that the radar AF represents the output of the matched filter and it describes the

two dimensional range-Doppler plane of the target as described in Section 2.4.

AF calculated at (l, p) = (0, 0) is equal to matched filter output, which means

that the reference signal matches perfectly to the surveillance signal. When time

delay and Doppler shift are added to the reference signal, that signal differs from

the surveillance signal. In this section, various correlation algorithms between

the surveillance signal and the time delayed and frequency shifted replica of the

reference signal are studied.
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4.1 Algorithms for Comparing Correlation of

Two Signals

In this section, some correlation algorithms, such as maximal information coef-

ficients (MIC) [55, 56], Pearson [57], Spearman [58] and a new method based on

the variance of the bistatic surveillance and reference data are introduced and

applied to the PBR system.

Let us define two signals sx and sy from the surveillance signal and the refer-

ence signal as follows:

sy[n] = ssurv[n], (4.1)

sx,(l,p)[n] = s∗ref [n− l]e−j2πpn/N ,

respectively. In 4.1, N is the number of the samples, l is the bistatic range

bin and p is the Doppler bin. We can simply calculate the correlation between

sx,(l,p)[n] and sy[n] to determine targets. When there is a target at a specific

(l∗, p∗) pair, the correlation should be high compared to other (l, p) values. As

can be understood from Eq. 4.1, sx and sy signals are complex valued signals. The

correlation between real parts, srx,(l,p)[n], sry[n] and imaginary parts, six,(l,p)[n], siy[n]

are processed separately and the magnitude of real and imaginary correlations

are combined:

ξ[l, p] =
√
r2r(sx,(l,p), sy) + r2i (sx,(l,p), sy) (4.2)

where rr(sx,(l,p), sy) is the correlation result of srx,(l,p)[n], sry[n] values and

ri(sx,(l,p), sy) is the correlation result of six,(l,p)[n], siy[n] obtained using some corre-

lation algorithms.

4.1.1 Maximal Information Coefficient (MIC)

Maximal information coefficients (MIC) is a recently introduced measure of the

relationship between two variables sx and sy. MIC is based on mutual infor-

mation and data binning. Data binning is applied to reduce the small valued
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observations of effects in correlation computation. Original data values falling

into a small interval, called a bin, can be changed by an another value repre-

senting the interval. Data binning is a form of quantization. Mutual information

is defined in probability and information theory and tries to find a measure of

mutual dependence of variables. The idea behind the MIC algorithm is that both

signals are divided into bins and these bins should be chosen in such a way that

the mutual information between the two signals are maximized [59]. The mutual

information of two discrete signals, sx and sy is given by

I(sx, sy) =
∑
y∈sy

∑
x∈sx

p(x, y) log
( p(x, y)

p(x)p(y)

)
(4.3)

where p(x, y) is the joint probability distribution function of x and y and p(x) and

p(y) are the marginal probability distribution functions of x and y, respectively.

The following condition of maximal information coefficients should be satisfied:

H(sx) = H(sy) = H(sx, sy) (4.4)

where H(sx) and H(sy) are marginal entropies and H(sx, sy) is the joint entropy.

The MIC algorithm uses real numbered variables, so our technique mentioned

in Section 4.1 can work properly because complex numbers are divided into real

and imaginary parts. Moreover, the product of the number of bins for sx and

sy is selected smaller than the size N0.6 to prevent the trivial dividing in [59] as

follows:

nsx × nsy ≤ N0.6 (4.5)

where N is the size of signals. After calculating the maximal mutual information,

MIC algorithm normalizes the scores between 0 and 1 and the highest normalized

mutual information obtained by any x-by-y grid can be denoted as r(sx, sy).
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4.1.2 Pearson Correlation Coefficient

Pearson correlation coefficient is also measure of the relationship between two

variables sx and sy. It is defined as the covariance of two variables divided

by multiplication of their standard deviations. Simply, the Pearson correlation

coefficient is calculated as follows:

r(sx, sy) =
cov(sx, sy)

σsxσsy
(4.6)

where cov(.) denotes the covariance, σsx is the standard deviation of sx. This

algorithm produces normalized values between -1 and +1.

4.1.3 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient is a statistical dependence measure be-

tween two variables. This method is similar to the Pearson correlation coefficient

method. The difference is to use ranked variables instead of the original variables.

Spearman’s rank correlation coefficient is calculated as follows:

r(sx, sy) =
6
∑n

i=1 d
2
i

n(n2 − 1)
(4.7)

where di is the difference ranks of sx and sy variables positioned in the ascending

order. Here is an example. Let us assume that we observe two vectors sx =

[0.6, 1.4 , 1.4, 2.5] and sy = [0.2, 0.5 , 0.8, 5]. The positions of sx and sy in

the ascending order is given by [1, 2, 3, 4], then the ranks of sx and sy can be

calculated by [1, 2.5, 2.5, 4] and [1, 2, 3, 4], respectively. Then, if there are

same variables in a vector, ranks of them are averaged for both of them. Other

ranks will be the same. The difference between ranks are d1,2,3,4 = [0, 1.5, 1.5 0].

The result of this correlation between sx and sy: r(sx, sy) = 6×4.5
4(16−1) = 0.45. The

output of this algorithm r(sx, sy) is normalized between -1 and +1.
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4.1.4 Cross-term Free Least Squares (CLS) Method

In this method, our aim is to compare correlation between signals sx and sy by

using least squares method. In standard least squares approach the following

distance problem is minimized:

MSE(l, p) =
∑
n

(ssurv[n]− al,ps∗ref [n− l]e−j2πpn/N)2 (4.8)

Whenever there is a target at specific (l,p) pair, the magnitude |al,p| of al,p be-

comes significantly larger than the other (l,p) pairs. Actually, the solution of the

above LS minimization is the same as AF approach. This can be easily proved

as follows: The least squares solution corresponds to the solution of

sy = al,psx,(l,p) (4.9)

where sx,(l,p)[n] = s∗ref [n− l]e−j2πpn/N and sy[n] = ssurv Therefore,

a∗l,p =
sHx,(l,p)sy

‖ sy ‖2
, (4.10)

where a∗l,p is the optimal value. Obviously, the numerator of Eq. 4.10 is the AF

function or the matched filter solution expressing the correlation between sx,(l,p)

and sy vectors. However, this suffers from cross-terms when a multichannel FM

based PBR system is used.

We heuristically solve two least squares problems separating the real and

imaginary parts of the original LS problem 4.8:

min
a1
‖ sry − a1,(l,p)srx,(l,p) ‖2 (4.11)

and

min
b1
‖ siy − b1,(l,p)six,(l,p) ‖2, (4.12)

where srx,(l,p), six,(l,p) and sry, siy are real and imaginary parts of sx,(l,p) and sy,

respectively. Our heuristic approach is based on the idea that 4.11 and 4.12
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do not contain any cross-terms. We can minimize 4.11 and 4.12 using CVX or

polyfit functions of MATLAB. We define the Cross-term free Least Squares

(CLS) as follows:

CLS(l, p) = a21,(l,p) + b21,(l,p), (4.13)

where a1,(l,p) and b1,(l,p) are optimal values for least squares problem.

Example scatter plots of sx,(l,p) and sy with target/no target scenarios are

shown in Figure 4.1. In Figures 4.1(a) and 4.1(b), the scatter plots with a target

are shown. In Figures 4.1(c) and 4.1(d), scatter plots without a target are shown.

As can be seen, it is not possible to visually distinguish these plots, but the CLS

coefficients for no target case are 0.0086 and 0.0107, respectively. In contrast, the

CLS coefficients are 1.34 and 1.32, respectively when there is a target.
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Figure 4.1: Scatter plots of sx,(l,p) and sy for a target with: (a) real parts
(CLS=1.34); (b) imaginary parts (CLS=1.32); (c) real parts (CLS=0.0086);
(d) imaginary parts (CLS=0.0107) of sx,(l,p) and sy with no target.

4.2 Simulation Results

This section presents the simulation results of each method mentioned above.

Because of the long time problem and high cost in MATLAB simulation program,

a new passive radar system scenario is generated as shown in Table 4.1. Sampling

frequency and integration time are fs = 2 × 105 Hz and 1 sec., respectively, so

we can get signals with 2 × 105 size. However, it takes too much time for the

simulation results. For this reason, a signal portion in 1 × 104 size is taken and
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used in our simulations. There are 3 targets and 6 clutters in this scenario. AF

is calculated according to these specifications and shown in Figure 4.2. Normal

procedure is performed with lms adaptive filter for all calculations. As can be

seen in Figure 4.2(b), the range-Doppler map turns out to be noisy. With the

following algorithms, targets are detected and noise level are decreased.

Table 4.1: System specifications for 3 targets.

Target 1 Target 2 Target 3
Bistatic Range (Km) 40,65 51,63 14,14
Doppler Frequency (Hz) 300 -300 -100
Gain (dB) 4,1 -3,8 -7,5
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(a)

(b)

(c)

Figure 4.2: Illustration of three targets according to system scenario (4.1): (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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In Figures 4.3, 4.4, 4.5 and 4.6, the PBR system scenario with 3 targets and 6

clutters is implemented with MIC, Pearson, Spearman and cross-term free least

squares methods, respectively. PSNR and SNR values are calculated to compare

which method gives the more successful results and these values are listed in Table

4.2. Moreover, ”FFT” means normal FFT based AF result with noise shown in

Figure 4.2. As can be seen figures and the table, the best result occurs with

the CLS method. Noise level is reduced as compared to FFT based method and

targets are detected correctly with the MIC and proposed method. PSNR and

SNR values for Pearson and Spearman algorithms are below the normal FFT

based method. In addition, the running time for CLS method took 1136.8 sec.

This shows the computational cost of CLS method is high even if it outperforms

other correlation algorithms.
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(a)

(b)

(c)

Figure 4.3: Simulation result for maximal information coefficient (MIC): (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.4: Simulation result for Pearson correlation coefficient: (a) 3D plot;
(b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.5: Simulation result for Spearman’s rank correlation coefficient: (a) 3D
plot; (b) Doppler frequency plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.6: Simulation result for CLS method: (a) 3D plot; (b) Doppler frequency
plot; (c) view from the top.
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Table 4.2: PSNR and SNR values of results.

PSNR (dB) SNR (dB)
Maximal information coefficient (MIC) 35,14 5,57
Pearson correlation coefficient 31,74 2,08
Spearman’s rank correlation coefficient 30,89 1,22
Cross-term free Least Squares method 36,08 6,54
FFT 33,39 3,76

In Figure 4.7, range-Doppler maps are thresholded within the range of 0 and 1

and plotted versus true detection rate. By doing this, we can learn which method

has the best true detection rate versus a threshold. If we analysis this graph,

the red line reaches the maximum rate quickly. As the threshold increases, true

detection rate converges the maximum rate for all of them because we know that

four methods detect three targets clearly at a threshold. As a result by looking

at this data, the CLS proposed method outperforms other correlation methods.
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Figure 4.7: True detection rate vs. threshold graph for correlation methods.

In addition, we also aim to solve another problem by using correlation methods

for radar target detection. It is possible to see targets with the same Doppler

frequency and close bistatic ranges, so the problem is to detect and track close

targets on the displaying screen. Let us assume a system scenario shown in Table

4.3 for two close targets and the range-Doppler map is plotted for AF in Figure
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4.8. As can be seen, targets are not detected separately. This can cause the

tracking problem in real-life work. For this purpose, CLS method is posed to

detect targets. Simulation result of close targets for CLS method is shown in

Figure 4.9. However, two targets can not be detected using the CLS method as

can be observed. The other correlation methods are performed on this scenario

and two targets can not be still detected.

In [60], multiple FM radio channels are used to increase the range resolution.

Instead of using one FM channel, multiple FM radio channels are proposed to

get better resolution for close targets. If we implement the multiple FM channels

on our scenario, we can detect close two targets shown in Figure 4.10. Multiple

FM channels consists of three channels which broadcasts pop music, rock music

and human speaking, respectively. Each channel has a bandwidth of 100 kHz

and there are dedicated spaces with 50 kHz between channels. Therefore, total

bandwidth of these channels is 400 kHz. However, there can be many sidelobes

and still cause some problems, so we apply CLS method on multiple FM channels

based PBR system. Again, a signal portion is taken from reference and surveil-

lance signals and used. The simulation result is given in Figure 4.11. It is obvious

to understand that the number of sidelobes is decreased and close targets are de-

tected clearly. Superious peaks are negligible compared to AF based close target

scenario. In addition, some different scenario examples shown in Tables 4.4, 4.5

and 4.6 are also studied for two and three close targets. The detection examples

are shown in Figures 4.13, 4.15 and 4.17, respectively.
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Table 4.3: System specifications for two close targets in Figures 4.8, 4.9 4.10 and
4.11.

Target 1 Target 2
Bistatic Range (Km) 4,875 6
Doppler Frequency (Hz) 40 40
Gain (dB) -10 -5

Table 4.4: System specifications for two close targets in Figures 4.12 and 4.13.

Target 1 Target 2
Bistatic Range (Km) 11,25 12,38
Doppler Frequency (Hz) 40 40
Gain (dB) -10 -5

Table 4.5: System specifications for two close targets in Figures 4.14 and 4.15.

Target 1 Target 2
Bistatic Range (Km) 19,50 20,63
Doppler Frequency (Hz) 80 80
Gain (dB) -10 -10

Table 4.6: System specifications for three close targets in Figures 4.16 and 4.17.

Target 1 Target 2 Target 3
Bistatic Range (Km) 19,50 20,63 21,75
Doppler Frequency (Hz) 96 96 96
Gain (dB) -10 -10 -10
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(a)

(b)

(c)

Figure 4.8: Simulation result of two close targets with p(1,2) = 40 Hz, l1 = 4.875
and l2 = 6 km for normal AF: (a) 3D plot; (b) bistatic range plot; (c) view from
the top.
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(a)

(b)

(c)

Figure 4.9: Simulation result of two close targets with p(1,2) = 40 Hz, l1 = 4.875
and l2 = 6 km for CLS method: (a) 3D plot; (b) bistatic range plot; (c) view
from the top.
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(a)

(b)

(c)

Figure 4.10: Simulation result of two close targets with p(1,2) = 40 Hz, l1 = 4.875
and l2 = 6 km for multiple FM channels based normal AF: (a) 3D plot; (b) bistatic
range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.11: Simulation result of two close targets with p(1,2) = 40 Hz, l1 =
4.875 and l2 = 6 km for multiple FM channels based CLS method: (a) 3D plot;
(b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.12: Simulation result of two close targets with p(1,2) = 40 Hz, l1 = 11, 25
and l2 = 12, 38 km for multiple FM channels based normal AF: (a) 3D plot;
(b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.13: Simulation result of two close targets with p(1,2) = 40 Hz, l1 = 11, 25
and l2 = 12, 38 km for multiple FM channels based CLS method: (a) 3D plot;
(b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.14: Simulation result of two close targets with p(1,2) = 80 Hz, l1 = 19.5
and l2 = 20, 63 km for multiple FM channels based normal AF: (a) 3D plot;
(b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.15: Simulation result of two close targets with p(1,2) = 80 Hz, l1 = 19.5
and l2 = 20, 63 km for multiple FM channels based CLS method: (a) 3D plot;
(b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.16: Simulation result of three close targets with p(1,2,3) = 96 Hz, l1 =
19.5, l2 = 20.63 and l3 = 21.75 km for multiple FM channels based normal AF:
(a) 3D plot; (b) bistatic range plot; (c) view from the top.
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(a)

(b)

(c)

Figure 4.17: Simulation result of three close targets with p(1,2,3) = 96 Hz, l1 =
19.5, l2 = 20.63 and l3 = 21.75 km for multiple FM channels based CLS method:
(a) 3D plot; (b) bistatic range plot; (c) view from the top.
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4.3 Summary

This chapter discusses whether the recently developed correlation methods can

be used in PBR systems. We show that correlation methods can be used instead

of the AF for target detection. However the proposed methods have high compu-

tational cost compared to the AF based approaches because the AF is computed

using the FFT algorithm. MIC, Pearson, Spearman’s rank correlation coefficients

are the methods used in this thesis. In addition, a new method called Cross-term

free Least Squares (CLS) method is proposed and compared with others. Best

results are observed with the CLS method. It is experimentally observed that it

is possible to resolve close targets when multichannel FM data is used. The ad-

vantage of the CLS method compared to AF based approaches is that superious

peaks do not appear in the proposed CLS method.

CLS method are also used to detect two close targets with multiple FM chan-

nels based signals and one FM channel. Even though one FM channel based PBR

system with CLS method can not separate targets, multiple channel system can

successfully detect both targets.
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Chapter 5

Conclusion and Future Work

Passive bistatic radar (PBR) systems have received major attention from the

scientific community in recent years. In this thesis, new target detection methods

are introduced and their properties are studied through simulations.

In practice, the AF is corrupted by noise. This especially affects the low SNR-

valued targets. The 2-D range-Doppler map is considered as a desired function

to be denoised or to be reconstructed from random compressive measurements.

As a result, compressive sensing algorithms are used to denoise the AF and PES-

`1 denoising method which does not use any measurement matrix is proposed.

The CS approach removes the noise in the AF. However, it may also remove

weak targets. To observe the weak targets a large number of measurements are

necessary. As a result, the computational cost is high because the matrix multi-

plication becomes a major burden due to the random nature of the measurement

matrix. On the other hand PES-`1 which is a sparsity based denoising method

does not require any measurement computations and it successfully reduces noise

and detects weak targets. PES-`1 can be used in practical systems.

In the second part of thesis, different correlation methods are used to compare

the surveillance and time delayed frequency shifted replica of the reference signal.

Maximal Information Coefficient (MIC), Pearson correlation coefficient, Spear-

man’s rank correlation coefficient are used for the target detection. However,
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they do not produce any improvement over the ordinary AF method.

This thesis proposes a new method called Cross-term free Least Squares (CLS)

which outperforms other correlation algorithms in terms of PSNR and SNR. The

CLS method is based on least squares coefficients of real and imaginary parts

of predicting the surveillance signal using the modulated reference signal. It is

observed that close targets can be detected by using CLS method in multichannel

based PBR systems. The advantage of the CLS method compared to the ordinary

AF approach is that superious peaks do not appear in the range-Doppler map.

Computational cost of CLS method is high but it can be used together with the

ordinary AF method on suspected superious peak locations.

5.1 Future Work

Unfortunately, we could not use real data in this thesis. Algorithms developed in

this thesis will be tested with real data in the near future.
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APPENDIX A

Stereo FM Signal

Frequency Modulation (FM) bases on changing frequency characteristics of high-

frequency carrier signal with the low-frequency message signal. In many countries,

FM commercial broadcasts are quite common and used in 88-108 Mhz band. A

typical FM radio occupies a bandwidth of about 100 kHz. FM signals have

appealing features of very broad coverage and it is possible to get high transmit

powers. You can either increase performance or decrease the development cost by

using FM signals in PBR systems, so there is a good trade-off between them [61].

FM signals have very high-frequency signals in the air due to the high-frequency

carrier signal. FM signals are assumed to be baseband signals after coming to

antennas, and then these baseband signals are given as complex envelop to radar

signal processing parts in our simulations.

Stereo FM signals are created using computed-based program, MATLAB

R2013b. In Turkey and some countries, stereo FM has been widely used for

radio broadcasting although many countries join the Digital Audio Broadcasting

(DAB). It is important to know that we have two channels, such as left (L) and

right (R). These channels are summed (L+R) and subtracted (L-R) because they

should be compatible with mono receivers. The modulation signal equation for
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stereo FM signal is given by

m(t) = 0.9

[
L+R

2
+
L−R

2
sin(4πfpt)

]
+ 0.1 sin(2πfpt), (A.1)

where L and R are audio signals, fp = 19KHz is is the frequency of pilot tone.

To simulate stereo FM better, left and right channels are generated randomly

[62]. The modulation signal that we generated in Equation A.1 is inserted to the

following equation:

s(t) = cos(2πkfm(t)) + j.sin(2πkfm(t)), (A.2)

where kf is the maximum frequency deviation. Equation A.2 gives us complex

baseband signal, then we use it as transmit signal [63]. When we generate the

modulated signal, m(t), the sampling frequency, fs = 200 kHz, modulated signal

bandwidth, Bm = 10 kHz, and receiver bandwidth, Br = 100 kHz are taken.

Why we use this sampling frequency is that FM radio use bandwidth of 100 kHz

as said before, so we should take sampling frequency 200 kHz at least because of

Nyquist theorem.
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Figure A.1: Generating stereo FM signal: (a) Modulated signal spec-
trum;(b) Complex envelope of modulated signal;
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