Structural coloring in large scale core-shell nanowires

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Nano Letters

Print ISSN

1530-6984

Electronic ISSN

Publisher

American Chemical Society

Volume

11

Issue

11

Pages

4661 - 4665

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We demonstrated two complementary size-dependent structural coloring mechanisms, interference and scattering, in indefinitely long core-shell nanowire arrays. The unusual nanostructures are comprised of an amorphous semiconducting core and a polymer shell layer with disparate refractive indices but with similar thermomechanical properties. Core-shell nanowires are mass produced from a macroscopic semiconductor rod by using a new top-to-bottom fabrication approach based on thermal size reduction. Nanostructures with diameters from 30 to 200 nm result in coloration that spans the whole visible spectrum via resonant Mie scattering. Nanoshell coloration based on thin film interference is proposed as a structural coloration mechanism which becomes dominant for nanowires having 700-1200 nm diameter. Controlled color generation in any part of visible and infrared spectral regions can be achieved by the simple scaling down procedure. Spectral color generation in mass-produced uniform core-shell nanowire arrays paves the way for applications such as spectral authentication at nanoscale, light-scattering ingredients in paints and cosmetics, large-area devices, and infrared shielding. © 2011 American Chemical Society.

Course

Other identifiers

Book Title

Citation