Algebraic reconstraction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density

dc.citation.epage294en_US
dc.citation.issueNumber1en_US
dc.citation.spage281en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorIder, Y. Z.en_US
dc.contributor.authorOnart, S.en_US
dc.date.accessioned2016-02-08T11:54:14Z
dc.date.available2016-02-08T11:54:14Z
dc.date.issued2004en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractMagnetic resonance-electrical impedance tomography (MREIT) algorithms fall into two categories: those utilizing internal current density and those utilizing only one component of measured magnetic flux density. The latter group of algorithms have the advantage that the object does not have to be rotated in the magnetic resonance imaging (MRI) system. A new algorithm which uses only one component of measured magnetic flux density is developed. In this method, the imaging problem is formulated as the solution of a non-linear matrix equation which is solved iteratively to reconstruct resistivity. Numerical simulations are performed to test the algorithm both for noise-free and noisy cases. The uniqueness of the solution is monitored by looking at the singular value behavior of the matrix and it is shown that at least two current injection profiles are necessary. The method is also modified to handle region-of-interest reconstructions. In particular it is shown that, if the image of a certain xy-slice is sought for, then it suffices to measure the z-component of magnetic flux density up to a distance above and below that slice. The method is robust and has good convergence behavior for the simulation phantoms used.en_US
dc.identifier.doi10.1088/0967-3334/25/1/032en_US
dc.identifier.issn0967-3334
dc.identifier.urihttp://hdl.handle.net/11693/27466
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics and Engineering in Medicineen_US
dc.relation.isversionofhttps://doi.org/10.1088/0967-3334/25/1/032en_US
dc.source.titlePhysiological Measurementen_US
dc.subjectBz based algorithmen_US
dc.subjectEITen_US
dc.subjectFinite element methoden_US
dc.subjectMagnetic resonance-electrical impedance tomographyen_US
dc.subjectMREITen_US
dc.subjectAlgorithmen_US
dc.subjectComputer assisted impedance tomographyen_US
dc.subjectComputer simulationen_US
dc.subjectElectric currenten_US
dc.subjectFinite element analysisen_US
dc.subjectImage reconstructionen_US
dc.subjectImaging systemen_US
dc.subjectMagnetic fielden_US
dc.subjectMathematical analysisen_US
dc.subjectNuclear magnetic resonance imagingen_US
dc.subjectPhantomen_US
dc.subjectPriority journalen_US
dc.subjectSignal noise ratioen_US
dc.subjectThree dimensional imagingen_US
dc.subjectThree dimensional magnetic resonance electrical impedance tomographyen_US
dc.subjectImpedanceen_US
dc.subjectInstrumentationen_US
dc.subjectMethodologyen_US
dc.subjectTheoretical modelen_US
dc.subjectTomographyen_US
dc.subjectElectric Impedanceen_US
dc.subjectMagneticsen_US
dc.subjectModelsen_US
dc.subjectRadiationen_US
dc.subjectTheoreticalen_US
dc.titleAlgebraic reconstraction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux densityen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Algebraic_reconstraction_for_3D_magnetic_resonance-electrical_impedance_tomography_MREIT_using_one_component_of_magnetic_flux_density.pdf
Size:
371.66 KB
Format:
Adobe Portable Document Format
Description:
View / Download