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Abstract
Magnetic resonance–electrical impedance tomography (MREIT) algorithms
fall into two categories: those utilizing internal current density and those
utilizing only one component of measured magnetic flux density. The
latter group of algorithms have the advantage that the object does not have
to be rotated in the magnetic resonance imaging (MRI) system. A new
algorithm which uses only one component of measured magnetic flux density is
developed. In this method, the imaging problem is formulated as the solution of
a non-linear matrix equation which is solved iteratively to reconstruct resistivity.
Numerical simulations are performed to test the algorithm both for noise-free
and noisy cases. The uniqueness of the solution is monitored by looking at
the singular value behavior of the matrix and it is shown that at least two
current injection profiles are necessary. The method is also modified to handle
region-of-interest reconstructions. In particular it is shown that, if the image of
a certain xy-slice is sought for, then it suffices to measure the z-component of
magnetic flux density up to a distance above and below that slice. The method
is robust and has good convergence behavior for the simulation phantoms used.

Keywords: magnetic resonance–electrical impedance tomography, MREIT,
Bz based algorithm, EIT, finite element method

1. Introduction

Magnetic resonance–electrical impedance tomography (MREIT) reconstruction algorithms
fall into two categories: those utilizing internal current density information and those utilizing
only one component of measured magnetic flux density (Birgül et al 2003b). The main
disadvantage of the former group of algorithms is that in order to calculate the internal current
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density distribution from Ampère’s law, one has to measure all three components of magnetic
flux density. This requires rotation of the object because using magnetic resonance imaging
(MRI), one can measure only one component of magnetic flux density at a time.

Several algorithms have been proposed which utilize only one component of magnetic
flux density, namely Bz, where z is the direction of the main magnetic field of the MR
system. Birgül and İder (1995), İder and Birgül (1998) and Birgül et al (2003b) use an
iterative sensitivity matrix method which utilizes the linearized relation between perturbation
in Bz and perturbation in conductivity. Seo et al (2003a) use the gradient of Bz, i.e. ∇Bz, to
reconstruct the internal current density distribution in axially symmetric cylindrical sections,
after which they use a J-substitution algorithm (Kwon et al 2002, Khang et al 2002) to
reconstruct conductivity. Seo et al (2003b) and Oh et al (2003) have developed iterative
algorithms which utilize the Laplacian of Bz, i.e. ∇2Bz. In these iterative algorithms, at each
iteration the gradient of conductivity is found first. Seo et al (2003b) integrate this gradient
on Cartesian lines to reconstruct conductivity. Oh et al (2003), on the other hand, use a layer
potential technique to reconstruct conductivity from its gradient.

The new reconstruction algorithm presented in this study formulates image reconstruction
as the iterative solution of a non-linear matrix equation. The formulation used in this study
also provides a handle for monitoring the uniqueness of the solution. İder et al (2003) have
analyzed uniqueness and reconstruction in MREIT and have proposed three methods for
numerical implementation provided that the internal current density is known. This paper
extends one of the methods given in İder et al (2003) to the problem of reconstruction using
only one component of magnetic flux density. Preliminary results of this work are presented
by Onart and İder (2003).

In the following, first, the formulation and numerical solution of the forward problem is
explained. Then, the inverse problem is formulated and numerical methods for its solution
are presented. Finally, simulation results which cover uniqueness considerations, region-of-
interest reconstructions and reconstruction in the presence of noise are given.

2. Formulation and solution of the forward problem

Let � be a bounded and electrically conductive domain in R
3 with boundary �. Conductivity

and resistivity distributions inside � are σ and ρ, respectively, both assumed to be positive.
We also attach surface electrodes on � to inject current into �. Potential distribution � obeys
Laplace’s equation and Neumann boundary conditions as follows:{

∇ · (σ∇�) = 0 in �

−σ∇� · n = Jinj on �
(1)

where n is the unit outward normal vector and Jinj is the injected surface current density which
is non-zero only on current injection electrodes. �, current density, J and electric field, E, are
related in � by

J = σE = −σ∇�. (2)

Magnetic flux density B, due to J, is given by the Biot–Savart integral

B(r) = µ0

4π

∫
�

J(r′) × r − r′

|r − r′|3 dv′ (3)

where r and r′ are field and source vectors defined in �.
The finite element method (FEM) is used to solve equation (1). In simulation studies, a

rectangular prism object as shown in figure 1 is divided into small hexahedral (cubic) constant
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Figure 1. (a) Rectangular prism object used in simulations. Only electrodes 3 and 4 are shown on
the rectangular prism. (b) All electrodes shown on the mid-horizontal cross section of the prism.
All electrodes are of the same size and shape. Double ended arrows denote the pairs of electrodes
used to inject current.

Figure 2. Elements used in FEM. (a) Square Cartesian mesh, made of cubic hexahedrons, for
an xy-slice of the rectangular prism object (b) Two pentahedrons forming a hexahedron (c) Three
tetrahedrons forming a pentahedron.

conductivity elements using a regular Cartesian mesh. In figure 2 the elements used in FEM
are shown. Each hexahedron is divided into two pentahedrons and each pentahedron, in turn,
is divided into three tetrahedrons. In a tetrahedral element � is approximated by a first-order
polynomial with respect to the coordinate axes (Silvester and Ferrari 1996), and therefore
each tetrahedron has constant E and J in it. In assigning E and J values to a hexahedron, we
averaged the corresponding values of the six tetrahedrons encompassed by that hexahedron.

Magnetic flux density is calculated by discretizing equation (3) such that each tetrahedron
acts as a current source located at its center of gravity, and field points are at the hexahedron
centers. For uniform current density and uniform conductivity distribution in a rectangular
3D object, Biot–Savart integral is evaluated semi-analytically and compared with numerical
results to understand the amount of error introduced due to this approximation. For semi-
analytical evaluation, the triple integral in equation (3) is handled as follows: integration w.r.t.
x ′ and y ′ variables is first evaluated analytically using symbolic math tools of MATLAB. The
remaining integral w.r.t. z′ variable is calculated numerically by adaptive Simpson quadrature
to a relative tolerance of 10−7 (Hanselman and Littlefield 2001). Maximum and mean absolute
differences in magnetic flux densities calculated by the semi-analytical method and our
numerical procedure are found to be 2.5% and 0.055%, respectively. The relative L2 difference
between the two results (defined similar to equation (13)) is found to be 0.056%.

The forward problem is defined as the calculation of �, E, J and B for a given conductivity
distribution and for the boundary conditions defined by the current injection electrodes.
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3. Formulation of the inverse problem

The inverse problem is the reconstruction of σ or ρ from the measured magnetic flux density.
It has previously been shown by İder et al (2003), starting from ∇ × E = 0, that

∇R × J = −∇ × J (4)

where R is defined as the natural logarithm of resistivity, or equivalently ρ = eR . Using the
fact that J = ∇ × B/µ0, and that ∇ × J = ∇ × (∇ × B/µ0) = ∇(∇ · B/µ0) − ∇2B/µ0, one
obtains

∇R × J = −∇(∇ · B/µ0) + ∇2B/µ0. (5)

Since B is solenoidal,

∇R × J = ∇2B/µ0. (6)

The matrix form of this equation is


0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0







∂R
∂x

∂R
∂y

∂R
∂z


 = 1

µ0




∇2Bx

∇2By

∇2Bz


 . (7)

Let us now concentrate on the third row of this matrix equation, which is,

∂R

∂x
Jy − ∂R

∂y
Jx = ∇2Bz/µ0. (8)

This equation formulates the inverse problem on slices perpendicular to the z direction.
If ∇2Bz is measured on a constant-z slice, then the solution of this equation gives us the R
distribution for that slice. Equation (8) is a first-order non-linear partial differential equation
which relates the partial derivatives of R to the Laplacian of Bz/µ0. The non-linearity is due
to the fact that the coefficients of the partial derivatives of R, i.e. Jy and Jx , are dependent on
R. We used an iterative algorithm to solve equation (8), the numerical aspects of which are
presented in the next section.

In general, equation (8) may not have a unique solution and therefore, as will be
demonstrated in section 5, more than one current injection profiles must be used in order
to obtain a unique solution for R apart from an additive constant.

4. Numerical solution of the inverse problem

To solve equation (8) numerically for a slice, we discretized it on a Cartesian mesh for which
the mesh points are the hexahedron centers. Let us assume that there are NM = N × M

hexahedrons in the slice of interest, where N is the number of hexahedrons in the x-direction,
and M is the number of hexahedrons in the y-direction. Discretization is achieved by replacing
derivatives with finite difference equivalents. The finite difference approximation can be
obtained by forward, backward or central differences. On edges and corners, appropriate
forward or backward differences, and in the interior regions, central difference are used. For
example, also assuming that discretization steps �x,�y and �z are all equal to unity, the
discretized equation for the (i, j)th hexahedron, sitting in the interior part of a Cartesian mesh,
i.e. 2 < i < N − 1 and 2 < j < M − 1, is

R(i+1,j) − R(i−1,j)

2
Jy(i,j) − R(i,j+1) − R(i,j−1)

2
Jx(i,j) =

(
∇2 Bz

µ0

)
(i,j)

(9)
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where the discretized version of the ∇2 operator for a scalar function U for the kth slice (not
on the boundary) is

(∇2U)(i,j) = U(i+1,j,k) + U(i−1,j,k) + U(i,j+1,k) + U(i,j−1,k) + U(i,j,k+1) + U(i,j,k−1) − 6U(i,j,k).

(10)

All together there are NM equations. We rearranged and combined all equations into
matrix form as,

AR = b (11)

where A is the (NM × NM) coefficient matrix, R is the (NM × 1) vector of all hexahedron
R values and b is the (NM × 1) vector of ∇2Bz/µ0.

Equation (11) is obtained for a single current injection profile. If there are K current
injection profiles, i.e. K internal current distributions, J	, renaming their A matrices and b
vectors as A	 and b	, where 	 = 1, 2, . . . , K , we obtain, by concatenation, the combined
system equation

AR = B (12)

where A = [
AT

1 AT
2 . . . AT

K

]T
and B = [

bT
1 bT

2 . . . bT
K

]T
.

Steps of the iterative reconstruction algorithm are then:

Step 1: Measure Bz and calculate ∇2Bz/µ0 for all current profiles. Obtain b	 vectors for
	 = 1, 2, . . . , K .
Step 2: Assume an initial R vector (which, for the first iteration, is considered to correspond
to a uniform distribution).
Step 3: Calculate J	 using FEM and obtain A	 for 	 = 1, 2, . . . , K .
Step 4: Concatenate A	 matrices and b	 vectors to obtain combined system equation AR = B.
Step 5: Solve the combined system equation to find R.
Step 6: Stop if the stopping criterion is met. If not, go to step 3 and use the R found in step 5
as the initial vector.

The solution of the combined system equation (step 5) requires that A is not singular.
This issue is discussed in section 5. One may check if the L2 norm of the change of vector R
between two consecutive iterations is below a preselected threshold in order to terminate the
iterative algorithm. In our simulation studies we have looked at the relative L2 error of the
difference between the reconstructed image and the actual resistivity distribution in order to
follow the convergence of the algorithm as iterations proceed. Relative L2 error is defined as

Relative L2 error = 100
‖(r − rorg)‖L2

‖rorg‖L2

(13)

where r and rorg are the reconstructed and original (actual) resistivity vectors respectively.
The ith elements of r and R are related by ri = eR(i) .

5. Simulation results

Computer simulations are made to demonstrate the performance of our algorithm. Figure 1
shows the 3D conductive simulation object which is a rectangular prism with edge lengths
of 32 cm, 32 cm and 64 cm for the x, y and z directions, respectively. In the same figure,
current injection electrodes, numbered from 1 to 8, are also shown. For solving the forward
problem using FEM for this object, we divided it into 64 slices in the z direction with
1 cm thickness each, and every slice is partitioned by a regular Cartesian mesh so that
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Figure 3. Resistivity distribution ρorg used in simulations.

it has 32 × 32 hexahedrons. Therefore, one hexahedron has a volume of 1 cm3. Each
hexahedron is assigned a uniform conductivity value. The slices are numbered from 1 to 64
starting from the bottom of the object. For example, the 10th slice is the slab between z =
9 cm and z = 10 cm planes. The object has an isotropic resistivity distribution ρorg which
has x, y and also z dependence, and which is also symmetric with respect to the z = 32 cm
plane. Figure 3 has the resistivity distributions for nine selected slices. Background resistivity
is taken as 500 � cm. Maximum and minimum resistivity values are 1800 � cm and 250 �

cm, respectively.
Four current injection profiles are used. Current is injected at one time between electrodes

1–2, 3–4, 5–6 or 7–8. For each current injection profile, the z-component of magnetic flux
density is calculated to generate simulated data. Electrodes cover 22 slices (22–43) in the
z-direction, they are placed midway in the z-direction, and their widths are ten hexahedron
sides. Therefore, each electrode is 10 cm wide and is 22 cm long in the z direction.

Figure 4 shows the logarithmic singular value plots for the combined system matrix for
the first iteration of slice 32, for various current injection profile combinations. If only one
current injection is used, namely with electrodes 1–2, then it is observed that the system matrix
has a rank of 1011 if only the singular values larger than (10−9 × maximum singular value)
are counted. With one current injection, meaningful reconstructions are not achieved even for
noise-free simulations. If two current injections are used, namely between electrodes 1–2 and
3–4, then the rank of the system becomes 1023. This shows that apart from a single degree
of freedom one can reconstruct uniquely. Adding other current injections does not alter the
situation and the rank of the system remains 1023. Similar behavior is observed for other slices
in the region-of-interest (defined later) and also for other iterations. Obviously the combined
system matrix and its singular value behavior depend on the distribution of conductivity
and the imposed Neumann boundary conditions. However, by looking at the singular value
behavior of the system matrix at each iteration one can at least make sure that requirement
of uniqueness is not lost throughout the iterative application of the reconstruction algorithm.
The reduced condition number of the combined system matrix, i.e. ratio of max singular value
to the 1023rd singular value, is 3.8 × 1012, 7041, 10 181 and 3268 for one, two, three or four
current injections, respectively. The condition number is a measure of the ill-conditioning of
the system matrix and indicates how tolerant the system is against measurement noise. In our
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Figure 4. Singular values (logarithmic) of the combined system matrix. One current profile means
current is injected between electrodes 1–2. Two current profiles mean current is injected between
electrodes 1–2 and 3–4. Three current profiles means current is injected between electrodes 1–2,
3–4 and 5–6. Four current profiles mean current is injected between electrodes 1–2, 3–4, 5–6 and
7–8. The vertical axis shows the singular values normalized to the maximum singular value.

case it is apparent that more than two current injections do not improve the condition number
significantly. Nevertheless, simulation results given in this study have been obtained using all
four current injection profiles.

In solving equation (12) for a slice, one of the hexahedron conductivities is specified
because the combined system matrix has one-less-than-full rank. Therefore, the algorithm
used in this study is only appropriate to reconstruct relative (apart from a multiplicative
constant) resistivity distributions. It is well known that using an additional peripheral voltage
measurement is sufficient to find the absolute distribution (Kwon et al 2002, Khang et al 2002,
Birgül et al 2003a, İder et al 2003).

In a real application of MREIT, one cannot measure Bz for all slices of the object. For
example, if the human thorax is to be imaged, it is impractical to measure Bz for all slices from
head to toe. As will be demonstrated, this may not even be necessary if the image of a certain
region-of-interest (RoI) is sought for. We selected slices 23–41 which are in the middle part
of the object as our RoI. We also assumed that ∇2Bz is known for this RoI. This means that
Bz is measured only for slices 22–42, i.e. the region-of-measurement (RoM) is slices 22–42.
However, for reconstruction of any slice in the RoI the combined system matrix, A, must be
formed which requires the calculation of current densities in that slice. Since the object is 3D,
the forward solution requires the knowledge of the whole 3D resistivity distribution. For the
first iteration this is not a problem but for second and subsequent iterations we have to assign
a conductivity distribution to the outside of the RoI. Therefore, we assigned blurred (low pass
filtered) versions of top and bottom slices of the RoI to out-of-RoI regions. For example, to fill
the upper side of RoI we first placed a blurred version of the top slice of RoI as the next upper
slice. Then we reblurred this slice and assigned it to the next upper slice. By this approach
we assigned smoothly varying resistivity distributions to out-of-RoI regions such that as the
distance of a slice from RoI increases, the resistivity distribution of that slice approaches a
uniform distribution with a value equal to the mean of the resistivity distribution of the starting
slice, i.e. the top (or the bottom) slice of the RoI.
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Figure 5. Five iterations of reconstructed resistivity for slice 32.

10 20 30
0

500

1000

1500

2000
1. Iteration

10 20 30
0

500

1000

1500

2000
2. Iteration

10 20 30
0

500

1000

1500

2000
3. Iteration

10 20 30
0

500

1000

1500

2000
4. Iteration

10 20 30
0

500

1000

1500

2000
5. Iteration

10 20 30
0

500

1000

1500

2000
1. Iteration

10 20 30
0

500

1000

1500

2000
2. Iteration

10 20 30
0

500

1000

1500

2000
3. Iteration

10 20 30
0

500

1000

1500

2000
4. Iteration

10 20 30
0

500

1000

1500

2000
5. Iteration

Figure 6. Five iterations of reconstructed resistivity profiles (mid-x and mid-y) for slice 32. The
solid lines are the original (actual) profiles and the dotted lines are the reconstructed profiles.

The blurring filter is a 9 × 9 FIR filter with 0.18 cm−1 cut-off frequency (−3 dB), the
frequency response of which is given in figure 7. With this filter six slices above (or below)
the RoI, approximately uniform resistivity distributions are achieved.

Figure 5 shows the first five iterations for slice 32 (RoI = slices 23–41). It is observed
that relative L2 error is 8.4%, 7.8%, 7.6%, 7.6% and 7.4% for the first five iterations. After
the fifth iteration the error remained at about 7.4%. To have more insight on the convergence
behavior of the algorithm, two profiles (mid-x and mid-y) of slice 32 are shown in figure 6.
As iterations proceed, the profiles fit the actual profiles much better except for high contrast
small objects.

Figure 8 shows the fifth iteration images for selected slices (RoI = slices 23–41). Due
to the assignment technique (with the blurring filter) used for out-of-RoI slices, these slices
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Figure 8. Fifth iteration reconstructed resistivities for selected slices of the RoI.

are not reconstructed well but the RoI slices are reconstructed with less than 10% relative L2

error.
Noise is then added to simulated Bz data (independently for each slice) to analyze the

behavior of the algorithm against noise. The noise model of Scott et al (1992) is used . In this
model, the standard deviation of Bz noise is estimated to be s.d. = 1/(2∗γ ∗Tc ∗ SNR), where
γ is the gyro-magnetic ratio (26.75 × 107 rad/(s × T)), Tc is the duration of applied current
and SNR is the signal-to-noise-ratio of the MR system. For Tc = 48 ms and SNR = 30, s.d.

becomes 1.24 nT. We have taken the probability density of noise to be zero-mean Gaussian.
Scott et al (1992) have derived a probability density function for phase noise in MRI images
which is very close to a Gaussian for the numerical values used in this study. Since two
phase images are subtracted to obtain Bz data, noise density further approaches a Gaussian.
Figure 9 shows the results of noisy simulations for total applied currents of 500 mA, 1000 mA
and 1500 mA for slice 32 (iteration 5, RoI = slices 23–41). Obviously with more current the
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Figure 9. Fifth iteration resistivity reconstructions for slice 32 with simulated noise using total
applied currents of (a) 500 mA, (b) 1000 mA and (c) 1500 mA. Relative L2 errors for (a), (b) and
(c) are 68%, 18% and 11%, respectively.

relative L2 error is much less because in the noise model of Scott et al (1992), the noise in Bz

does not depend on the magnitude of Bz and hence it is independent of total applied current.
Concentrating on slice 32, it is of interest to study the minimum necessary thickness for

the RoI. We have chosen the RoI to encompass slices 31–34, 30–35, 29–36, 28–37, 27–38,
26–39, 25–40, 24–41 or 23–41 for which the error in the reconstructed resistivity of slice
32 is 9.7%, 9.8%, 9.7%, 9.4%, 9%, 8.8%, 8.7%, 8.4% or 7.4%, respectively. These results
show that as the RoI becomes thinner, error is increased. Electrodes cover slices 22–43.
For RoI thickness larger than the electrode length (in the z-direction), error still remains at
around 7.4%. For slice 32 it appears that the optimum RoI is about the same thickness as the
electrodes.

6. Discussion and conclusions

A new algorithm for MREIT using only one component of magnetic flux density is presented
and it is demonstrated that if at least two current injection profiles are used, then acceptable
(relative) images are obtained. Seo et al (2003b) have addressed the same problem and have
published an algorithm which uses

∂σ

∂x

∂�

∂y
− ∂σ

∂y

∂�

∂x
= ∇2Bz/µ0 (14)

instead of equation (8). It can easily be shown that equation (14) can be derived from
equation (8) by a change of variables using R = ln(ρ) and σ = 1/ρ. Seo et al use
equation (14) to iteratively find the σ distribution. At each iteration they first calculate the
gradient of conductivity in a slice (using at least two current injection profiles) and then they
reconstruct conductivity by integrating its gradient on straight Cartesian grid lines. Oh et al
(2003) have followed a similar approach except that once the gradient of conductivity is
found, conductivity is reconstructed using a layer potential technique. This technique appears
to require accurate information about the slice boundary. The algorithm presented in this
study formulates the imaging problem as a matrix equation, by which the whole R vector is
solved, and therefore there is no need to develop methods for obtaining a scalar function from
its gradient. One advantage of the present algorithm is that it can be easily adapted to any
geometry with irregular boundary whereas integrating the gradient in an irregularly shaped
object requires more effort.

In İder et al (2003), uniqueness and reconstruction for MREIT with known internal
current density is analyzed. It is shown that if the internal current density is known then one
can reconstruct resistivity using equation (4) and at least two current injection profiles. It
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is also shown that there are different possibilities for numerical implementation, namely, the
method of characteristics, finding and integrating the gradient and formulating reconstruction
as a linear matrix equation. The only difference between the methods presented in İder et al
(2003) and the algorithms for reconstruction from only one component of Bz is that, in the
latter, the same algorithms must be applied iteratively because, since Jy and Jx in equation (8)
are not known, these variables must be estimated at each iteration.

For a given slice, the system matrix for any iteration must be well conditioned. In our
method, by looking at the singular value behavior of the system matrix, one can monitor
the validity of the method for a given current injection profile combination. In the case of
ill-conditioned matrices, the method presented in this paper can be easily modified to make
use of regularization techniques such as Tikhonov regularization or truncated singular value
decomposition.

An interesting observation is that even with the first iteration, one reconstructs the internal
boundaries, i.e. regions where resistivity has non-zero gradient, fairly well. As iterations
proceed, the numerical values of constant resistivity regions are found more accurately.
One reason for having good reconstruction property for the internal boundaries is that in
equation (8) the right-hand side is non-zero only at boundaries where the resistivity has non-
zero gradient and even if the Jx and Jy values are not accurately known one reconstructs the
boundary information well.

For the simulation object used in this study, the optimum RoI for the central slice is found
to have a thickness about the same as the electrode height. This result is, of course, highly
specific to the particular resistivity distribution, current injection and object geometry used in
this study. In practice, one must determine the optimum RoI by making realistic simulations
for the actual body sections one aims at imaging. Electrode height and width must also be
experimented with together with the size of RoI.

Noisy simulations indicate that a total applied current of 1500 mA gives good
reconstructions (with a relative L2 error of 11%). With 1000 mA current, we obtained 18%
error. For lower currents we did not get satisfactory results. In Lee et al (2003a) 28 mA is
injected into a 5 cm × 5 cm × 5 cm phantom and satisfactory experimental results are obtained
using an MRI system with SNR � 30, and Tc = 48 mS (with relative L2 error of 25%). In
their study, denoising was used to reduce the effect of noise. In this study the object is 32 cm ×
32 cm × 64 cm, a size much closer to thorax dimensions. Therefore, for a 32 cm × 32 cm ×
64 cm object, roughly speaking, we need to apply around 2300 mA (�28 × 32 × 64/(5 × 5))
in order to have a similar amount of current density inside. Considering that we have not used
any denoising in the algorithm presented in this study, and also considering that experimental
studies are prone to other noise contributions not accounted for by Scott et al’s noise model,
one may conclude that the minimum requirement for total applied current is found to be of
the same order of magnitude as in Lee et al’s (2003) study. However, the safety limit for total
current applied by electromedical instruments is 100 µA in the frequency range of DC–1 kHz.
It appears that there is still need for innovation in MREIT for decreasing the necessary amount
of applied current, in addition to using advanced denoising techniques and MR machines with
high SNR.

In simulations without noise, the best image obtained for slice 32 still has 7.4% relative
L2 error. Errors made in generating Bz data using the forward solver and errors made in finite
difference approximations given in equations (9) and (10) contribute to the final reconstruction
error. Finer meshes may be utilized to obtain more accurate results at the cost of computation
time. Our forward solver for internal current density for four current injections takes about
3 min on a Pentium-4 PC with 1.7 GHz clock. One iteration of the inverse solution for all
slices takes 20 min with the same PC. Generating simulated Bz data for one current injection
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Figure 10. Slice 8 images for 16 × 8 × 8 discretisation for the first 11 iterations of SMM using
RoI reconstruction.

takes 2 h using optimized C-code. These computation times are formidable, and are only
acceptable for feasibility studies.

In addition to algorithms which utilize ∇2Bz or ∇Bz there is also the sensitivity matrix
method (SMM) proposed by Birgül and İder (1995), İder and Birgül (1998) and Birgül et al
(2003b). In these earlier works, SMM is proposed for and applied to 2D simulation objects
and 2D experimental phantoms. In this study 3D reconstructions are aimed at, and therefore
SMM must be adapted to 3D objects.

In SMM, Bz measurements are related to conductivity perturbations using a matrix
equation in the form �Bz = S�σ , where �Bz = Bz − B0

z ,�σ = σ − σ 0 and S is
the sensitivity matrix. Here, σ 0 is the conductivity distribution around which the relation
between Bz and σ is linearized, and B0

z is the corresponding calculated magnetic flux density.
Usually σ 0 is initially considered to be uniform and the method is applied iteratively. The
most straightforward adaptation to 3D is to use a sensitivity matrix which relates all Bz

measurements (i.e. for all slices) to all conductivity perturbations, ending up with a huge
matrix and big computational burden. To be specific, for the simulation phantom used in
this study, �σ is a vector with 32 × 32 × 64 = 65 536 elements, �Bz is a vector with
32 × 32 × 64 × 4 = 262 144 elements (because four current injections are used) and S is a
262 144 by 65 536 matrix. Feasible computation time and memory requirements can only be
obtained by compromising spatial resolution. If the object is divided into 16 slices with 8 ×
8 hexahedrons in each slice, it takes 30 min to complete each iteration.

It is also of interest to determine whether SMM is suitable for RoI reconstructions. For
the 16 slice discretisation (i.e. 16 × 8 × 8 hexahedrons), it is assumed that Bz is measured
for slices 6, 7, 8, 9, 10 and �σ is taken to encompass the conductivity perturbations for these
slices. Other slices are obtained by blurring as described previously. Figure 10 shows the
reconstructed images for slice 8 for the first 11 iterations (after which a divergent behavior is
observed). No regularization is applied and the matrix equation is solved in the least squares
sense. Relative L2 errors are 29%, 25%, 22%, 20%, 18%, 16%, 14%, 13%, 12%, 11% and
10% for the first 11 iterations. Each iteration takes 5.5 min.
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This paper does not aim at investigating all aspects of SMM in relation to applying it to
3D objects. We think it suffices here to mention that although SMM appears to be behaving
properly even for RoI reconstructions, it is not comparable to the algebraic method proposed
in this study in terms of computation time if the same spatial resolution is requested.

Lee et al (2003b) have developed a 3D FEM forward solver to be used in MREIT. In
their work and also in this study, where phantoms with rectangular prism blocks are used,
hexahedral elements are suitable because their corners are compatible with a Cartesian grid. In
the context of MREIT, a Cartesian grid is advantageous because (i) MR systems return images
on an equally spaced Cartesian sampling grid and (ii) such a grid is especially handy when
operators such as the Laplacian are applied to process Bz data. Lee et al (2003b) have used
trilinear interpolation functions to approximate the potential field in a hexahedral element.
Since the codes that we have developed previously are based on first-order interpolation
functions, we have chosen to decompose each hexahedral element further into six tetrahedral
elements. However, in order to keep the number of conductivity variables low, the conductivity
distribution is discretized on a hexahedron basis, and therefore all six tetrahedrons forming a
hexahedron are assigned the same conductivity value. For arbitrarily shaped realistic objects
and for maximum computational efficiency, the optimum choice of FEM elements and their
interpolation functions still remains to be investigated.

In a practical setting, currents in external lead wires also create a magnetic flux density
within the object, and it is necessary to carefully position these lead wires to minimize the
z-component of this field (Birgül et al 2003b). However, within the object the Laplacian of
this field is zero (Seo et al 2003a, Lee et al 2003b). The same is true for the field created
by currents flowing through recessed electrodes which are proposed to minimize the effects
of artifacts caused by the metallic materials of electrodes in MR images (Lee et al 2003b,
Oh et al 2003). In this respect methods based on the Laplacian of Bz are preferable over other
methods which utilize Bz or ∇Bz. On the other hand, amplification of noise due to twice
differentiation stands as a relative disadvantage of methods using ∇2Bz.

In Oh et al (2003) four electrodes are used to produce six current injection profiles. In this
study eight electrodes were used to produce four current injection profiles using pairs of across
electrodes in a rotating configuration. With eight electrodes one can produce 7 + 6 + 5 + 4 +
3 + 2 = 28 profiles even when current is injected from pairs of electrodes only. However,
we have shown that even with four profiles, the condition number of the combined sensitivity
matrix is not improved much. In future studies, it is therefore necessary to investigate the
optimum current injection strategy in relation to uniqueness and noise tolerance on one hand,
and times of data acquisition and computation on the other.

References
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