Projections onto the epigraph set of the filtered variation function based deconvolution algorithm

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.citation.epage74en_US
dc.citation.spage70en_US
dc.contributor.authorTofighi, M.en_US
dc.contributor.authorÇetin, A. Enisen_US
dc.coverage.spatialWashington, DC, USAen_US
dc.date.accessioned2018-04-12T11:46:18Z
dc.date.available2018-04-12T11:46:18Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 7-9 December 2016en_US
dc.descriptionConference Name: IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016en_US
dc.description.abstractA new deconvolution algorithm based on orthogonal projections onto the hyperplanes and the epigraph set of a convex cost function is presented. In this algorithm, the convex sets corresponding to the cost function are defined by increasing the dimension of the minimization problem by one. The Filtered Variation (FV) function is used as the convex cost function in this algorithm. Since the FV cost function is a convex function in RN, then the corresponding epigraph set is also a convex set in the lifted set in RN+1. At each step of the iterative deconvolution algorithm, starting with an arbitrary initial estimate in RN+1, first the projections onto the hyperplanes are performed to obtain the first deconvolution estimate. Then an orthogonal projection is performed onto the epigraph set of the FV cost function, in order to regularize and denoise the deconvolution estimate, in a sequential manner. The algorithm converges to the deblurred image.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:46:18Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1109/GlobalSIP.2016.7905805en_US
dc.identifier.urihttp://hdl.handle.net/11693/37632
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/GlobalSIP.2016.7905805en_US
dc.source.titleProceedings of the IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016en_US
dc.subjectDeconvolutionen_US
dc.subjectEpigraph set of a convex cost functionen_US
dc.subjectFiltered variationen_US
dc.subjectProjection onto convex setsen_US
dc.subjectCost benefit analysisen_US
dc.subjectCost functionsen_US
dc.subjectIterative methodsen_US
dc.subjectOrthogonal functionsen_US
dc.subjectConvex cost functionen_US
dc.subjectDeconvolution algorithmen_US
dc.subjectIterative deconvolution algorithmsen_US
dc.subjectMinimization problemsen_US
dc.subjectOrthogonal projectionen_US
dc.subjectSequential mannersen_US
dc.titleProjections onto the epigraph set of the filtered variation function based deconvolution algorithmen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Projections onto the epigraph set of the filtered variation function based deconvolution algorithm.pdf
Size:
192.47 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version