A systematic study on Au-capped Si nanowhiskers for size-dependent improved biosensing applications

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Plasmonics

Print ISSN

1557-1955

Electronic ISSN

Publisher

Springer

Volume

15

Issue

6

Pages

1739 - 1745

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
11
downloads

Series

Abstract

Reducing the distance between the fluorescence molecules and noble metal (resonant) nanostructures is known to advance the process of electromagnetic coupling and energy transfer, which in return yields fluorescence enhancement particularly exploited for improved biomedical applications. In this study, Au-capped Si nanowhiskers (NWs) at various sizes were fabricated using a vapor–liquid–solid (VLS) mechanism for systematically investigating the dependence of the size of the Au-capped Si NWs on the fluorescence enhancement factor with respect to the fluorescence emission from Rhodamine 6G (Rh-6G) fluorophore. Opposite to what is anticipated from the literature, the maximum enhancement was obtained for the sample for which the Au-nanoparticle (NP) capping is well isolated from the fluorophore and the vertical distance between the fluorophore and the plasmonic metal nanoparticle is largest. Numerical simulations using the finite element method (FEM) were shown to support the experimental optical response results. Four-point probe I-V measurements also show that the Schottky ideality factor of Au-capped Si NWs decays exponentially upon the rise in the fluorescence enhancement factor.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)