Two-and one-dimensional honeycomb structures of silicon and germanium
buir.contributor.author | Çıracı, Salim | |
buir.contributor.orcid | Çıracı, Salim|0000-0001-8023-9860 | |
dc.citation.epage | 236804-4 | en_US |
dc.citation.issueNumber | 23 | en_US |
dc.citation.spage | 236804-1 | en_US |
dc.citation.volumeNumber | 102 | en_US |
dc.contributor.author | Cahangirov, S. | en_US |
dc.contributor.author | Topsakal, M. | en_US |
dc.contributor.author | Aktürk, E. | en_US |
dc.contributor.author | Şahin, H. | en_US |
dc.contributor.author | Çıracı, Salim | en_US |
dc.date.accessioned | 2016-02-08T10:03:56Z | |
dc.date.available | 2016-02-08T10:03:56Z | |
dc.date.issued | 2009 | en_US |
dc.department | Department of Physics | en_US |
dc.description.abstract | First-principles calculations of structure optimization, phonon modes, and finite temperature molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low-buckled, honeycomb structures. Similar to graphene, these puckered structures are ambipolar and their charge carriers can behave like a massless Dirac fermion due to their π and π* bands which are crossed linearly at the Fermi level. In addition to these fundamental properties, bare and hydrogen passivated nanoribbons of Si and Ge show remarkable electronic and magnetic properties, which are size and orientation dependent. These properties offer interesting alternatives for the engineering of diverse nanodevices. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:03:56Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1103/PhysRevLett.102.236804 | en_US |
dc.identifier.issn | 1079-7114 | |
dc.identifier.uri | http://hdl.handle.net/11693/22723 | |
dc.language.iso | English | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevLett.102.236804 | en_US |
dc.source.title | Physical Review Letters | en_US |
dc.subject | Ambipolar | en_US |
dc.subject | Dirac fermions | en_US |
dc.subject | Electronic and magnetic properties | en_US |
dc.subject | Finite temperatures | en_US |
dc.subject | First-principles calculation | en_US |
dc.subject | Fundamental properties | en_US |
dc.subject | Graphene | en_US |
dc.subject | Nano-devices | en_US |
dc.subject | Nanoribbons | en_US |
dc.subject | Orientation dependent | en_US |
dc.subject | Phonon mode | en_US |
dc.subject | Structure optimization | en_US |
dc.subject | Dynamics | en_US |
dc.subject | Fermions | en_US |
dc.subject | Germanium | en_US |
dc.subject | Honeycomb structures | en_US |
dc.subject | Hydrogen | en_US |
dc.subject | Magnetic properties | en_US |
dc.subject | Molecular dynamics | en_US |
dc.subject | Passivation | en_US |
dc.subject | Structural optimization | en_US |
dc.title | Two-and one-dimensional honeycomb structures of silicon and germanium | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Two- and one-dimensional honeycomb structures of silicon and germanium.pdf
- Size:
- 836.45 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version