Swappable distributed MIMO controller for a VCT engine
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In the early days of computer control, only one centralized computer was responsible for executing the algorithms. Increasingly, computer control algorithms reside inside individual system components in a distributed fashion. Variable camshaft timing (VCT) is an appealing feature for automotive engines because it allows optimization of the cam timing over a wide range of operating conditions. In this paper, a method to distribute the discrete multiple-input mutiple-output controller for the VCT engine to improve the component swapping modularity of the VCT actuator and the EGO sensor components using network communications is presented. First, a discrete LQG controller is designed, and then this controller is distributed to the engine control unit, the VCT controller, and the EGO sensor controller in order to maximize the component swapping modularity of the system. A control oriented pre-optimization technique, which simplifies the optimization problem, and a candidate solution was devised to maximize component modularity. © 2006 IEEE.