Auger recombination and carrier multiplication in embedded silicon and germanium nanocrystals

Date

2008

Authors

Sevik, C.
Bulutay, C.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B - Condensed Matter and Materials Physics

Print ISSN

1098-0121

Electronic ISSN

Publisher

The American Physical Society

Volume

77

Issue

12

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

For Si and Ge nanocrystals (NCs) embedded in wide band-gap matrices, the Auger recombination and carrier multiplication (CM) lifetimes are computed exactly in a three-dimensional real space grid using empirical pseudopotential wave functions. Our results in support of recent experimental data offer other predictions. We extract simple Auger constants valid for NCs. We show that both Si and Ge NCs can benefit from photovoltaic efficiency improvement via CM due to the fact that under an optical excitation exceeding twice the band-gap energy, the electrons gain lion's share from the total excess energy and can cause a CM. We predict that CM becomes especially efficient for hot electrons with an excess energy of about 1 eV above the CM threshold.

Course

Other identifiers

Book Title

Keywords

Citation