Post-Treatment od Silicon Nanocrystals Produced by Ultra-Short Pulsed Laser Ablation in Liquid: Toward Blue Luminescent Nanocrystal Generation
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Blue luminescent colloidal silicon nanocrystals (Si-NCs) were produced in a two-stage process. In the first step, synthesis of Si-NCs was achieved by femtosecond pulsed laser ablation of a silicon wafer, which was immersed in deionized water. The size and the structural and the chemical characteristics of colloidal Si-NCs were investigated by TEM and EDAX analyses, and it is found out that the Si-NCs are in spherical shape and the particle diameters are in the range of 5-100 nm. In the second step, ultrasonic waves and filtering chemical-free post-treatment of colloidal Si-NCs solution was performed to reduce the particle size. High-resolution TEM (HRTEM) studies on post-treated colloidal solution clearly show that small (1-5.5 nm in diameter) Si-NCs were successfully produced. Raman spectroscopy results clearly confirms the generation of Si nanoparticles in the crystalline nature, and the Raman scattering study of post-treated Si-NCs confirms the reduction of the particle size. The UV-vis absorption and photoluminescence (PL) spectroscopy studies elucidate the quantum confinement effect of Si-NCs on the optical properties. The colloidal Si-NCs and post-treated Si-NCs solutions present strong absorption edge shifts toward UV region. Broadband PL emission behavior is observed for the initial colloidal Si-NCs, and the PL spectrum of post-treated Si-NCs presents a blue-shifted broadband PL emission behavior due to the particle size reduction effect.