Exceptional Belyi coverings

Date

2015

Editor(s)

Advisor

Klyachko, Alexander

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
5
views
55
downloads

Series

Abstract

Exceptional Belyi covering is a connected Belyi covering uniquely determined by its ramification scheme or the respective dessin d’enfant. Well known examples are cyclic, dihedral, and Chebyshev coverings. We add to this list a new infinite series of rational exceptional coverings together with the respective Belyi functions. We shortly discuss the field of definition of a rational exceptional covering and show that it is either Q or its quadratic extension. Existing theories give no upper bound on degree of the field of definition of an exceptional covering of genus 1. It is an open question whether the number of such coverings is finite or infinite. Maple search for an exceptional covering of genus g > 1 found none of degree 18 or less. Absence of exceptional hyperbolic coverings is a mystery we could not explain.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)