Browsing by Subject "physical chemistry"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access 3-Propionyl-thiazolidine-4-carboxylic acid ethyl esters: A family of antiproliferative thiazolidines(Royal Society of Chemistry, 2015) Önen-Bayram F.E.; Buran, K.; Durmaz I.; Berk, B.; Cetin-Atalay, R.Cancer results from unregulated cell growth. Reactivating the process of the programmed cell death, i.e. apoptosis, is a classical anticancer therapeutic strategy. The apoptosis-inducing property of the (2RS,4R)-2-phenyl-3-propionyl-thiazolidine-4-carboxylic acid ethyl ester (ALC 67) molecule has recently been discovered. We analyzed in this study the impact of the phenyl moiety of this molecule on its biological activity by synthesizing and evaluating analogues where this substituent was replaced by a series of aromatic and aliphatic groups. The results demonstrated that the molecule's antiproliferative property resisted such modifications. Thus, in addition to developing a family of thiazolidine compounds with promising anticancer properties; our investigation revealed that the second position of the thiazolidine ring can be used either to tune the physicochemical properties of ALC67 or to introduce a fluorescent tag to the structure in order to track it in cells and determine its exact molecular mechanism of action. © 2015 The Royal Society of Chemistry.Item Open Access In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents(Institute of Physics Publishing, 2010) Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioǧlu H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B.316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. © 2010 IOP Publishing Ltd.