Browsing by Subject "oxidative stress"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 4,5-dianilinophtalimide protects neuroendocrine cells against serum deprivation-induced stress and apoptosis(2013) Ergin V.; Erdogan, M.; Karasu Ç.; Menevşe, A.OBJECTIVE: The aim of this study was to reveal the effects of 4,5-dianilinophthalimide (DAPH), which inhibits amyloid β fibrillization, against serum deprivation (SD)-induced apoptosis and the possible mechanisms in differentiated PC12 neuron cells. METHODS: Firstly, we evaluated whether DAPH protects cell viability exposed to SD by MTT assay. Next, we examined the changes of phospho-p38 MAPK (Thr180/Tyr182), phospho-HSP27 (Ser82), phospho-c-JUN (Ser73) and cleaved-CASP3 (Asp175) profiles by immunoblotting, in PC12 cells exposed to SD. Intracellular reactive oxygen species (ROS) level was also measured. RESULTS: SD induced apoptosis accompanied by up-regulation of phospho-p38 MAPK (Thr180/Tyr182), phospho-HSP27 (Ser82), phospho-c-JUN (Ser73), cleaved-CASP3 (Asp175) and intracellular ROS content. Co-treatment with nontoxic doses of DAPH prevented apoptosis by the attenuation of activated proteins and reduction of ROS level. These results suggest that serum deprivation-induced apoptosis inhibited by DAPH administration. CONCLUSION: We have provided for the first evidence that DAPH has a neuroprotective effect on SD-caused stress, probably via contributing the reestablishment of redox homeostasis. © 2013 Neuroendocrinology Letters.Item Open Access Application of a customized pathway-focused microarray for gene expression profiling of cellular homeostasis upon exposure to nicotine in PC12 cells(2004) Konu Ö.; Xu X.; Ma J.Z.; Kane J.; Wang J.; Shi, S.J.; Li, M.D.Maintenance of cellular homeostasis is integral to appropriate regulation of cellular signaling and cell growth and division. In this study, we report the development and quality assessment of a pathway-focused microarray comprising genes involved in cellular homeostasis. Since nicotine is known to have highly modulatory effects on the intracellular calcium homeostasis, we therefore tested the applicability of the homeostatic pathway-focused microarray on the gene expression in PC-12 cells treated with 1 mM nicotine for 48 h relative to the untreated control cells. We first provided a detailed description of the focused array with respect to its gene and pathway content and then assessed the array quality using a robust regression procedure that allows for the exclusion of unreliable measurements while decreasing the number of false positives. As a result, the mean correlation coefficient between duplicate measurements of the arrays used in this study (control vs. nicotine treatment, three samples each) has increased from 0.974±0.017 to 0.995±0.002. Furthermore, we found that nicotine affected various structural and signaling components of the AKT/PKB signaling pathway and protein synthesis and degradation processes in PC-12 cells. Since modulation of intracellular calcium concentrations ([Ca2+]i) and phosphatidylinositol signaling are important in various biological processes such as neurotransmitter release and tissue pathogenesis including tumor formation, we expect that the homeostatic pathway-focused microarray potentially can be used for the identification of unique gene expression profiles in comparative studies of drugs of abuse and diverse environmental stimuli, such as starvation and oxidative stress. © 2003 Elsevier B.V. All rights reserved.Item Open Access Evaluation of the relationship between aromatase/sirtuin1 interaction and miRNA expression in human neuroblastoma cells(Bentham Science Publishers, 2022-10-21) Kartal, Yasemin; Tokat, Ünal Metin; Uğur, Pelin Kelicen; Yılmaz, Serkan; Karahan, Sevilay; Budak, Murat TimurBackground: Changes in activation/inhibition of Sirtuin-1 (SIRT1) and aromatase play an important role in a plethora of diseases. MicroRNAs (miRNAs) modulate multiple molecular pathways and affect a substantial number of physiological and pathological processes. Objective: The aim of this study was to investigate any possible interaction between aromatase and SIRT1 in SH-SY5Y cells and to see how there is a connection between this interaction and miRNA expression, if there is an interaction. Methods: In this study, cells were incubated in serum-deprived media for 6, 12, and 24 h. Aromatase and SIRT1 expressions were evaluated by Western blot. The IC50 concentration of SIRT1 activator (SRT1720), SIRT1 inhibitor (EX527), and aromatase inhibitors (letrozole and fadrozole) was determined by the XTT method. Then, CYP19A1 and SIRT1 levels were evaluated in the presence of SIRT1 siRNA or IC50 values for each activator/inhibitor. Finally, CYP19A1, SIRT1 expression and miRNA target gene were assessed with bioinformatic approaches. Results: Aromatase and SIRT1 protein levels were significantly elevated in the cells incubated at 24 h in serum-deprived media (p ≤ 0.05). SIRT1 also positively regulated CYP19A1 in SH-SY5Y cells in media with/without FBS. Serum deprivation depending on time course caused changes in the oxidant/ antioxidant system. While oxidative stress index tended to decrease in the absence of FBS at 24 h compared to the control, it showed a significant decrease at 48 h in a serum-deprived manner (p ≤ 0.001). As a result of bioinformatics analysis, we determined 3 miRNAs that could potentially regulate SIRT1 and CYP19A1. hsa-miR-27a-3p and hsa-miR-181a-5p correlated in terms of their expressions at 24 h compared to 12 h, and there was a significant decrease in the expression of these miRNAs. On the contrary, the expression of hsa-miR-30c-5p significantly increased at 24 h compared to 12 h. Conclusion: Considering the results, a direct link between aromatase and SIRT1 was observed in human neuroblastoma cells. The identification of key miRNAs, hsa-miR-27a-3p, hsa-miR-30c-5p, and hsa-miR-181a-5p targeting both aromatase and SIRT1, provides an approach with novel insights on neurology-associated diseases.