Browsing by Subject "neurotransmission"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Perisylvian GABA levels in schizophrenia and bipolar disorder(Elsevier Ireland Ltd, 2017) Atagün, M. İ.; Şıkoglu, M. E.; Soykan, Ç.; Can, S. S.; Ulusoy-Kaymak S.; Çayköylü, A.; Algın O.; Phillips, M. L.; Öngür, D.; Moore, C. M.The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy (1H-MRS). Patients with schizophrenia (n = 25), bipolar I disorder (BD-I; n = 28) and bipolar II disorder (BD-II; n = 20) were compared with healthy controls (n = 30).1H-MRS data was acquired using a Siemens 3 T whole body scanner to quantify right and left perisylvian structures’ (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ2= 9.62, df: 3, p = 0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p = 0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r2= 0.68, p = 0.006, n = 33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. � 2016 Elsevier Ireland LtdItem Open Access A role for LYNX2 in anxiety-related behavior(2009) Tekinay, A.B.; Nong, Y.; Miwa J.M.; Lieberam I.; Ibanez-Tallon I.; Greengard P.; Heintz, N.Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.