Browsing by Subject "nanotechnology"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Exosomes: Natural nanovesicle candidates used in the diagnosis and treatment(Turkish Society of Immunology, 2013) Kahraman, T.; Gíiçlíiler G.; Gürsel I.Exosomes are nano-vesicles released by all known cells. Although they were called as residual cells acting as a cleaner of undesired molecules out of cell during the first discovery in 1980s, recent studies have revealed critical physiological tasks of these vesicles over the past 20 years. These vesicles which can be produced by all body fluids play an important role in many biological activities including intracellular communication, signal conduction, genetic material transfer, and regulation of immune response. Due to their several tasks, exosomes play a crucial role in the disease pathogenesis. Considering all these tasks, exosomes can be considered in both diagnosis and treatment. Exosomes originating from distinct cells have immunosuppressive and immunostimulatory features and, thereby, therapeutic attempts which regulate immune function in case of autoimmune and immunosuppression. In addition, thanks to being natural nano-carriers, exosomes may pave the way for the development of new-generation vaccines containing both adjuvant and antigen. Besides therapeutic applications, there are evidences indicating that exosomes can be used in the diagnosis of several cancer forms including prostate cancer, glioblastoma, squamous-cell lung carcinoma and hepatocellular carcinoma, as they play a role in the disease pathogenesis. © 2014 Turkish Journal of Immunology.Item Open Access Hierarchical Electrospun Nanofibers for Energy Harvesting, Production and Environmental Remediation(Royal Society of Chemistry, 2014) Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S.As the demand for energy is rapidly growing worldwide ahead of energy supply, there is an impulse need to develop alternative energy-harvesting technologies to sustain economic growth. Due to their unique optical and electrical properties, one-dimensional (1D) electrospun nanostructured materials are attractive for the construction of active energy harvesting devices such as photovoltaics, photocatalysts, hydrogen energy generators, and fuel cells. 1D nanostructures produced from electrospinning possess high chemical reactivity, high surface area, low density, as well as improved light absorption and dye adsorption compared to their bulk counterparts. So, research has been focused on the synthesis of 1D nanostructured fibers made from metal oxides, composites, dopants and surface modification. Furthermore, fine tuning these NFs has facilitated fast charge transfer and efficient charge separation for improved light absorption in photocatalytic and photovoltaic properties. The recent trend in exploring these electrospun nanostructures has been promising in-terms of reducing costs and enhancing the efficiency compared to conventional materials. This review article presents the synthesis of 1D nanostructured fibers made via electrospinning and their applications in photovoltaics, photocatalysis, hydrogen energy harvesting and fuel cells. The current challenges and future perspectives for electrospun nanomaterials are also reviewed.Item Open Access Neutral particle mass spectrometry with nanomechanical systems(Nature Publishing Group, 2015) Sage, E.; Brenac, A.; Alava, T.; Morel, R.; Dupré, C.; Hanay, M.S.; Roukes, M.L.; Duraffourg L.; Masselon, C.; Hentz, S.Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the speciesa' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability. © 2015 Macmillan Publishers Limited.Item Open Access Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers(Elsevier, 2014) Aytac Z.; Dogan, S.Y.; Tekinay, T.; Uyar, TamerAllyl isothiocyanate (AITC) is known as an efficient antibacterial agent but it has a very high volatility. Herein, AITC and AITC/β-cyclodextrin (CD)-inclusion complex (IC) incorporated in polyvinyl alcohol (PVA) nanofibers were produced via electrospinning. SEM images elucidated that incorporation of AITC and AITC/β-CD-IC into polymer matrix did not affect the bead-free fiber morphology of PVA nanofibers. 1H-NMR and headspace GC-MS analyses revealed that very low amount of AITC was remained in PVA/AITC-NF because of the rapid evaporation of AITC during the electrospinning process. Nevertheless, much higher amount of AITC was preserved in the PVA/AITC/β-CD-IC-NF due to the CD inclusion complexation. The sustained release of AITC from nanofibers was evaluated at 30°C, 50°C and 75°C via headspace GC-MS. When compared to PVA/AITC-NF, PVA/AITC/β-CD-IC-NF has shown higher antibacterial activity against Escherichia coli and Staphylococcus aureus due to the presence of higher amount of AITC in this sample which was preserved by CD-IC. © 2014 Elsevier B.V.Item Open Access Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures(2011) Acar H.; Garifullin, R.; Güler, Mustafa O.Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials. © 2011 American Chemical Society.Item Open Access Supramolecular chiral self-assembled peptide nanostructures(2016-01) Hatip, MeryemSelf-assembly process is an easy and convenient bottom-up technique for designing novel functional materials. Self-assembled peptide amphiphile (PA) molecules are remarkable building blocks for a wide-range of applications due to their easy synthesis, biocompatibility, biodegradabability and dynamic nature in aqueous conditions. Controlling self-assembly behavior still remains complex, since it can be affected by multiple factors. Chirality is an important parameter for designing and controlling self-assembled supramolecular nanomaterials. In this thesis, self-assembly mechanism of chiral peptide molecules was studied with different driving forces in order to develop new methodsfor producing self-assembled nanomaterials. In addition to self-assembly mechanism, different morphologies and chiral behaviors of the self-assembled supramolecular chiral peptide amphiphile nanostructureswere monitored with variouscharacterization methods. pH is a significant contributor for the self-assembly process and this effect was studied in detail to elucidate pH dependency of supramolecular conformation. According to morphological characterizations, histidine containing PA molecules form nanosheet like structures under acidic pH.At the isoelectric point of imidazole, they have a tendency to form twisted fiber or ribbon structures. Athigh pH iv conditions, pH 10, they form nanotubes due to the neutralization of imidazole groups and π-π interactionsat theside chain of histidine moiety.When another aromatic ring is included in the sequence, in this case phenylalanine residue, different nanostructures were observed. In addition to histidine PA, lysine and glutamic acid containing peptide building blocks were also studied to understand the effect of electrostatic interactions. Phenylalanine containing PAs and valine containing PAs were compared in terms of their chiral self-assembly behaviors. As a result of self-assembly of the positively charged and negatively charged peptides, well defined nanostructures were obtained. While valine containing PA molecules form straight nanofibers, phenyl alanine containing PAs form well ordered rigid twisted fibers and twisted ribbon structures.