Browsing by Subject "monomial Burnside ring"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fusion systems in group representation theory(2013) Tuvay, İpekResults on the Mackey category MF corresponding to a fusion system F and fusion systems defined on p-permutation algebras are our main concern. In the first part, we give a new proof of semisimplicity of MF over C by using a different method than the method used by Boltje and Danz. Following their work in [8], we construct the ghost algebra corresponding to the quiver algebra of MF which is isomorphic to the quiver algebra. We then find a formula for the centrally primitive mutually orthogonal idempotents of this ghost algebra. Then we use this formula to give an alternative proof of semisimplicity of the quiver algebra of MF over the complex numbers. In the second part, we focus on finding classes of p-permutation algebras which give rise to a saturated fusion system which has been studied by Kessar-KunugiMutsihashi in [16]. By specializing to a particular p-permutation algebra and using a result of [16], the question is reduced to finding Brauer indecomposable p-permutation modules. We show for some particular cases of fusion systems we have Brauer indecomposability. In the last part, we study real representations using the real monomial Burnside ring. We deduce a relation on the dimensions of the subgroup-fixed subspaces of a real representation.Item Open Access The monomial Burnside functor(2009) Okay, CihanGiven a finite group G, we can realize the permutation modules by the linearization map defined from the Burnside ring B(G) to the character ring of G, denoted AK(G). But not all KG-modules are permutation modules. To realize all the KGmodules we need to replace B(G) by the monomial Burnside ring BC(G). We can get information about monomial Burnside ring of G by considering subgroups or quotient groups of G. For this the setting of biset functors is suitable. We can consider the monomial Burnside ring as a biset functor and study the elemental maps: transfer, retriction, inflation, deflation and isogation. Among these maps, deflation is somewhat difficult and requires more consideration. In particular, we examine deflation for p-groups and study the simple composition factors of the monomial Burnside functor for 2-groups with the fibre group {±1}.