The monomial Burnside functor
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Given a finite group G, we can realize the permutation modules by the linearization map defined from the Burnside ring B(G) to the character ring of G, denoted AK(G). But not all KG-modules are permutation modules. To realize all the KGmodules we need to replace B(G) by the monomial Burnside ring BC(G). We can get information about monomial Burnside ring of G by considering subgroups or quotient groups of G. For this the setting of biset functors is suitable. We can consider the monomial Burnside ring as a biset functor and study the elemental maps: transfer, retriction, inflation, deflation and isogation. Among these maps, deflation is somewhat difficult and requires more consideration. In particular, we examine deflation for p-groups and study the simple composition factors of the monomial Burnside functor for 2-groups with the fibre group {±1}.