Browsing by Subject "inflammasome"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Chitosan polysaccharide suppress toll like receptor dependent immune response(Turkish Society of Immunology, 2015) Tincer G.; Bayyurt, B.; Arıca, Y.M.; Gürsel İ.Objectives: Chitosan is a widely used vaccine or anti-cancer delivery vehicle. In this study, we investigated the immunomodulatory effect of chitosan/pIC nanocomplexes on mouse immune cells. Materials and methods: Proliferative and cytotoxic features of chitosan were tested via CCK-8 assay on RAW 264. 7. IL-1β production was assessed via ELISA from PEC supernatants. TNF-α, and NO induction from chitosan treated RAW cells detected by ELISA and Griess assay, respectively. mRNA message levels of TLRs and cytokines on macrophages in response to chitosan/pIC nanocomplex treatments were evaluated by RT-PCR. Results: Results revealed that chitosan is non-toxic to cells, however, proliferative capacities of macrophages were reduced by chitosan administration. Mouse PECs treated with chitosan, led to NLRP3 dependent inflammasome activation as evidenced by dose-dependent IL-1β secretion. Chitosan/pIC nanocomplexes did not improve immunostimulatory action of pIC on RAW cells, since TNF-α and NO productions remained unaltered. Expression levels of several TLRs, CXCL-16 and IFN-α messages from mouse splenocytes were down regulated in response to chitosan/pIC nanocomplex treatment. Conclusion: Our results revealed that chitosan is an anti-proliferative and inflammasome triggering macromolecule on immune cells. Utilization of chitosan as a carrier system is of concern for immunotherapeutic applications. © 2015 Turkish Journal of Immunology.Item Open Access Inflammasome induction and immunostimulatory effects of CpG-ODN loaded liposomes containing DC-cholesterol(Turkish Society of Immunology, 2013) Bayyurt, B.; Gürsel I.Objectives: This study aims to investigate the effects of cholesterol content and cationic property of liposomes on immune response. Materials and methods: Liposomes containing high amounts of 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-cholesterol) were prepared and loaded with K- and D-type CpG oligonucleotide (CpG-ODN) via dehydration-rehydration (DRV) method. After splenocytes and peritoneal exudate cells (PECs) primed with lipopolysaccharide (LPS) was incubated either with free or liposomal CpG-ODN counterparts, supernatants were collected and used in cytokine (IFN-g, IL-1γ and IL-1β) ELISA. Additionally, supernatants of PECs primed with LPS and stimulated with liposomes containing different doses of DC-cholesterol were collected and used in IL-1β ELISA assay. Results: Low-dose CpG-ODN loaded liposomal formulations induced higher immune activation than free CpG-ODN at the same dose. While high-dose liposomal CpG-ODN formulations decreased pro-inflammatory cytokine production in splenocytes, they increased the secretion of IL-1β. Inflammasome activation was increased in a dose dependent manner when PECs primed with LPS were incubated with only liposomes. Varying lipid molar ratios of DC-Cholesterol containing liposomes increased IL-1β production based on increasing lipid molar ratio. Conclusion: This study revealed that type and lipid ratio of liposomes may alter the cellular efficacy of the loaded immune-stimulatory agent and may initiate inflammasome activation. © 2014 Turkish Journal of Immunology.Item Open Access Targeting IRE1 with small molecules counteracts progression of atherosclerosis(National Academy of Sciences, 2017-01) Tufanli, O.; Akillilar, P. T.; Acosta-Alvear, D.; Kocaturk, B.; Onat, U. I.; Hamid, S. M.; Çimen, I.; Walter, P.; Weber, C.; Erbay, E.Metaflammation, an atypical, metabolically induced, chronic lowgrade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ERresident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.