BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "hydrogen sulfide"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Rational design and synthesis of bodipy dyes for molecular sensing, light harvesting and photodynamic applications
    (2014) Kütük, Tuğba Özdemir
    BODIPY dyes have been addressed in many applications due to highly important features. These unique properties can be summarized as high photostability, high extinction coefficient, easy functionality, etc. Thus, tremendous studies have been published and, ion sensing, photodynamic therapy, dye-sensitized solar cells and light harvesting are some of the areas that BODIPY dyes have been utilized. In this thesis, BODIPY dyes were functionalized to be used for different concepts. In the first study, the main purpose was to seek for ion signaling differences of two isomeric tetra-styryl BODIPY dyes with charge donor ligand located at 1,7 versus 3,5 positions. Second work focuses on the light harvesting concept with the use of tetra-styryl BODIPY derivatives. Third study describes the coupling of energy transfer with internal charge transfer to monitor the alterations in intensity ratios, so, dynamic range of the fluorescent probe is improved. Design and synthesis of BODIPY dyes for detection of biological thiols in aqueous solution both chromogenically and fluorogenically was given in fourth study. Another biologically important molecule, hydrogen sulfide is selectively detected via BODIPY-based probe and depicted in the fifth study. In the sixth work, persistent luminescent nanoparticles are attached to BODIPY-based photosensitizer to activate the photodynamic action.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension
    (Kluwer Academic Publishers, 2015) Han, S.; Uludag, M.O.; Usanmaz, S.E.; Ayaloglu-Butun F.; Akcali, K.C.; Demirel-Yilmaz, E.
    Hypertension is a risk factor for the cardiovascular diseases. Although, several drugs are used to treat hypertension, the success of the antihypertensive therapy is limited. Resveratrol decreases blood pressure in animal models of hypertension. This study researched the mechanisms behind the effects of resveratrol on hypertension. Hypertension was induced by using the deoxycorticosterone acetate (DOCA)-induced (15 mg/kg twice per week, subcutaneously) salt-sensitive hypertension model of Wistar rats. Hypertension caused a decrease in endothelium-dependent relaxations of the isolated thoracic aorta. Resveratrol treatment (50 mg/l in drinking water) prevented DOCA salt-induced hypertension, but did not improve endothelial dysfunction. Plasma nitric oxide (NO), asymmetric dimethylarginine (ADMA), total antioxidant capacity (TAC) and hydrogen sulfide (H2S) levels were not changed by DOCA salt application. However, treatment of resveratrol significantly decreased ADMA and increased TAC and H2S levels. NO level in circulation was not significantly changed by resveratrol. DOCA salt application and resveratrol treatment also caused an alteration in the epigenetic modification of vessels. Staining pattern of histone 3 lysine 27 methylation (H3K27me3) in the aorta and renal artery sections was changed. These results show that preventive effect of resveratrol on DOCA salt-induced hypertension might due to its action on the production of some blood biomarkers and the epigenetic modification of vessels that would focus upon new aspect of hypertension prevention and treatment. © 2014, Springer Science+Business Media Dordrecht.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback