Browsing by Subject "genome"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access The bonobo genome compared with the chimpanzee and human genomes(2012) Prüfer, K.; Munch, K.; Hellmann I.; Akagi, K.; Miller J.R.; Walenz, B.; Koren, S.; Sutton G.; Kodira, C.; Winer, R.; Knight J.R.; Mullikin J.C.; Meader, S.J.; Ponting, C.P.; Lunter G.; Higashino, S.; Hobolth, A.; Dutheil J.; Karakoç, E.; Alkan, C.; Sajjadian, S.; Catacchio, C.R.; Ventura, M.; Marques-Bonet, T.; Eichler, E.E.; André, C.; Atencia, R.; Mugisha L.; Junhold J.; Patterson, N.; Siebauer, M.; Good J.M.; Fischer, A.; Ptak, S.E.; Lachmann, M.; Symer, D.E.; Mailund, T.; Schierup, M.H.; Andrés, A.M.; Kelso J.; Pääbo, S.Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. © 2012 Macmillan Publishers Limited. All rights reserved.Item Open Access Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel(Nature Publishing Group, 2014) Delaneau O.; Marchini J.; McVeanh G.A.; Donnelly P.; Lunter G.; Marchini J.L.; Myers, S.; Gupta-Hinch, A.; Iqbal, Z.; Mathieson I.; Rimmer, A.; Xifara, D.K.; Kerasidou, A.; Churchhouse, C.; Altshuler, D.M.; Gabriel, S.B.; Lander, E.S.; Gupta, N.; Daly, M.J.; DePristo, M.A.; Banks, E.; Bhatia G.; Carneiro, M.O.; Del Angel G.; Genovese G.; Handsaker, R.E.; Hartl, C.; McCarroll, S.A.; Nemesh J.C.; Poplin, R.E.; Schaffner, S.F.; Shakir, K.; Sabeti P.C.; Grossman, S.R.; Tabrizi, S.; Tariyal, R.; Li H.; Reich, D.; Durbin, R.M.; Hurles, M.E.; Balasubramaniam, S.; Burton J.; Danecek P.; Keane, T.M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker J.; Quail, M.; Ayub Q.; Chen, Y.; Coffey, A.J.; Colonna V.; Huang, N.; Jostins L.; Scally, A.; Walter, K.; Xue, Y.; Zhang, Y.; Blackburne, B.; Lindsay, S.J.; Ning, Z.; Frankish, A.; Harrow J.; Chris, T.-S.; Abecasis G.R.; Kang H.M.; Anderson P.; Blackwell, T.; Busonero F.; Fuchsberger, C.; Jun G.; Maschio, A.; Porcu, E.; Sidore, C.; Tan, A.; Trost, M.K.; Bentley, D.R.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Bauer, M.; Cheetham, R.K.; Cox, T.; Eberle, M.; Murray L.; Shaw, R.; Chakravarti, A.; Clark, A.G.; Keinan, A.; Rodriguez-Flores J.L.; De LaVega F.M.; Degenhardt J.; Eichler, E.E.; Flicek P.; Clarke L.; Leinonen, R.; Smith, R.E.; Zheng-Bradley X.; Beal, K.; Cunningham F.; Herrero J.; McLaren W.M.; Ritchie G.R.S.; Barker J.; Kelman G.; Kulesha, E.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Streeter I.; Toneva I.; Gibbs, R.A.; Dinh H.; Kovar, C.; Lee, S.; Lewis L.; Muzny, D.; Reid J.; Wang, M.; Yu F.; Bainbridge, M.; Challis, D.; Evani, U.S.; Lu J.; Nagaswamy, U.; Sabo, A.; Wang, Y.; Yu J.; Fowler G.; Hale W.; Kalra, D.; Green, E.D.; Knoppers, B.M.; Korbel J.O.; Rausch, T.; Sttz, A.M.; Lee, C.; Griffin L.; Hsieh, C.-H.; Mills, R.E.; Von Grotthuss, M.; Zhang, C.; Shi X.; Lehrach H.; Sudbrak, R.; Amstislavskiy V.S.; Lienhard, M.; Mertes F.; Sultan, M.; Timmermann, B.; Yaspo, M.L.; Herwig, S.R.; Mardis, E.R.; Wilson, R.K.; Fulton L.; Fulton, R.; Weinstock G.M.; Chinwalla, A.; Ding L.; Dooling, D.; Koboldt, D.C.; McLellan, M.D.; Wallis J.W.; Wendl, M.C.; Zhang Q.; Marth G.T.; Garrison, E.P.; Kural, D.; Lee W.-P.; Leong W.F.; Ward, A.N.; Wu J.; Zhang, M.; Nickerson, D.A.; Alkan, C.; Hormozdiari F.; Ko, A.; Sudmant P.H.; Schmidt J.P.; Davies, C.J.; Gollub J.; Webster, T.; Wong, B.; Zhan, Y.; Sherry, S.T.; Xiao, C.; Church, D.; Ananiev V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Cohen, R.; Cook, C.; Garner J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez J.; Meric P.; Ostapchuk, Y.; Phan L.; Ponomarov, S.; Schneider V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang H.; Wang J.; Fang X.; Guo X.; Jian, M.; Jiang H.; Jin X.; Li G.; Li J.; Li, Y.; Liu X.; Lu, Y.; Ma X.; Tai, S.; Tang, M.; Wang, B.; Wang G.; Wu H.; Wu, R.; Yin, Y.; Zhang W.; Zhao J.; Zhao, M.; Zheng X.; Lachlan H.; Fang L.; Li Q.; Li, Z.; Lin H.; Liu, B.; Luo, R.; Shao H.; Wang, B.; Xie, Y.; Ye, C.; Yu, C.; Zheng H.; Zhu H.; Cai H.; Cao H.; Su, Y.; Tian, Z.; Yang H.; Yang L.; Zhu J.; Cai, Z.; Wang J.; Albrecht, M.W.; Borodina, T.A.; Auton, A.; Yoon, S.C.; Lihm J.; Makarov V.; Jin H.; Kim W.; Kim, K.C.; Gottipati, S.; Jones, D.; Cooper, D.N.; Ball, E.V.; Stenson P.D.; Barnes, B.; Kahn, S.; Ye, K.; Batzer, M.A.; Konkel, M.K.; Walker J.A.; MacArthur, D.G.; Lek, M.; Shriver, M.D.; Bustamante, C.D.; Gravel, S.; Kenny, E.E.; Kidd J.M.; Lacroute P.; Maples, B.K.; Moreno-Estrada, A.; Zakharia F.; Henn, B.; Sandoval, K.; Byrnes J.K.; Halperin, E.; Baran, Y.; Craig, D.W.; Christoforides, A.; Izatt, T.; Kurdoglu, A.A.; Sinari, S.A.; Homer, N.; Squire, K.; Sebat J.; Bafna V.; Ye, K.; Burchard, E.G.; Hernandez, R.D.; Gignoux, C.R.; Haussler, D.; Katzman, S.J.; Kent W.J.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E.T.; Lappalainen, T.; Devine, S.E.; Liu X.; Maroo, A.; Tallon L.J.; Rosenfeld J.A.; Michelson L.P.; Angius, A.; Cucca F.; Sanna, S.; Bigham, A.; Jones, C.; Reinier F.; Li, Y.; Lyons, R.; Schlessinger, D.; Awadalla P.; Hodgkinson, A.; Oleksyk, T.K.; Martinez-Cruzado J.C.; Fu, Y.; Liu X.; Xiong, M.; Jorde L.; Witherspoon, D.; Xing J.; Browning, B.L.; Hajirasouliha I.; Chen, K.; Albers, C.A.; Gerstein, M.B.; Abyzov, A.; Chen J.; Fu, Y.; Habegger L.; Harmanci, A.O.; Mu X.J.; Sisu, C.; Balasubramanian, S.; Jin, M.; Khurana, E.; Clarke, D.; Michaelson J.J.; OSullivan, C.; Barnes, K.C.; Gharani, N.; Toji L.H.; Gerry, N.; Kaye J.S.; Kent, A.; Mathias, R.; Ossorio P.N.; Parker, M.; Rotimi, C.N.; Royal, C.D.; Tishkoff, S.; Via, M.; Bodmer W.; Bedoya G.; Yang G.; You, C.J.; Garcia-Montero, A.; Orfao, A.; Dutil J.; Brooks L.D.; Felsenfeld, A.L.; McEwen J.E.; Clemm, N.C.; Guyer, M.S.; Peterson J.L.; Duncanson, A.; Dunn, M.; Peltonen L.A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved.Item Open Access Molecular cloning and characterization of the common 1b subtype of HCV from Turkey(1999) Öztan, AslıHepatitis C Virus is a major cause of acute and chronic hepatitis worldwide. 80-90% of Hepatitis C Virus infections become chronic and 75% of these cases lead to liver disease, including cirrhosis, liver failure and hepatocellular carcinoma. Hepatitis C Virus was first identified by molecular cloning of the viral genome in 1989. Hepatitis C Virus is an enveloped virus containing a positive stranded RNA genome with a size of around 9.5 kilobases. In terms of genomic organization, it was accepted as a member of Flaviviridae family as a new genus named Hepaciviruses. The single-stranded RNA genome encodes a single open reading frame, which is transcribed into a single polypeptide of 3010 or 3030 amino acids and cleaved into viral proteins Core, E l, E2/p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B by host and viral proteases. Sequencing, serotyping and RFLP studies indicate that Hepatitis C Virus genome is highly variable. There are six distinct genotypes and at least 74 subtypes with different distributions between the geographic areas. Variability is not equally distributed throughout the genome. 5' UTR, some parts of the 3' UTR and capsid protein are the most conserved regions. The predominant genotype in the Turkish population was found to be lb by sequencing of the 5-UTR. In this study, the entire sequence encompassing the complete coding region and partial non coding regions of the genotype lb obtained from a HCV-infected Turkish patient was cloned to investigate its evolutionary relationship with other genotypes and to study its overall genome organization,. In order to characterize the viral genome, viral RNA was extracted from the serum, cDNA was synthesized, the HCV genome was amplified by PCR in 7 overlapping fragments, PCR fragments were cloned into bacterial vectors and cloned inserts were sequenced by automated sequencing methodology. The partial sequence data covering 70% of the cloned HCV genome indicate that the Turkish lb genotype displays high homology to other lb genotypes, but differs from others by distinct amino acid changes. To our knowledge, this is the first report about the HCV genome structure from Turkey. The HCV subgenomic fragments obtained here will serve to further molecular and immunologic studies on this dominant form of HCV found in Turkish patients.Item Open Access Robustness of massively parallel sequencing platforms(Public Library of Science, 2015) Kavak P.; Yüksel, B.; Aksu, S.; Kulekci, M.O.; Güngör, T.; Hach F.; Şahinalp, S.C.; Alkan, C.; Saʇiroʇlu, M.Ş.The improvements in high throughput sequencing technologies (HTS) made clinical sequencing projects such as ClinSeq and Genomics England feasible. Although there are significant improvements in accuracy and reproducibility of HTS based analyses, the usability of these types of data for diagnostic and prognostic applications necessitates a near perfect data generation. To assess the usability of a widely used HTS platform for accurate and reproducible clinical applications in terms of robustness, we generated whole genome shotgun (WGS) sequence data from the genomes of two human individuals in two different genome sequencing centers. After analyzing the data to characterize SNPs and indels using the same tools (BWA, SAMtools, and GATK), we observed significant number of discrepancies in the call sets. As expected, the most of the disagreements between the call sets were found within genomic regions containing common repeats and segmental duplications, albeit only a small fraction of the discordant variants were within the exons and other functionally relevant regions such as promoters. We conclude that although HTS platforms are sufficiently powerful for providing data for first-pass clinical tests, the variant predictions still need to be confirmed using orthogonal methods before using in clinical applications. © 2015 Kavak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.