Browsing by Subject "cytokine release"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Chitosan polysaccharide suppress toll like receptor dependent immune response(Turkish Society of Immunology, 2015) Tincer G.; Bayyurt, B.; Arıca, Y.M.; Gürsel İ.Objectives: Chitosan is a widely used vaccine or anti-cancer delivery vehicle. In this study, we investigated the immunomodulatory effect of chitosan/pIC nanocomplexes on mouse immune cells. Materials and methods: Proliferative and cytotoxic features of chitosan were tested via CCK-8 assay on RAW 264. 7. IL-1β production was assessed via ELISA from PEC supernatants. TNF-α, and NO induction from chitosan treated RAW cells detected by ELISA and Griess assay, respectively. mRNA message levels of TLRs and cytokines on macrophages in response to chitosan/pIC nanocomplex treatments were evaluated by RT-PCR. Results: Results revealed that chitosan is non-toxic to cells, however, proliferative capacities of macrophages were reduced by chitosan administration. Mouse PECs treated with chitosan, led to NLRP3 dependent inflammasome activation as evidenced by dose-dependent IL-1β secretion. Chitosan/pIC nanocomplexes did not improve immunostimulatory action of pIC on RAW cells, since TNF-α and NO productions remained unaltered. Expression levels of several TLRs, CXCL-16 and IFN-α messages from mouse splenocytes were down regulated in response to chitosan/pIC nanocomplex treatment. Conclusion: Our results revealed that chitosan is an anti-proliferative and inflammasome triggering macromolecule on immune cells. Utilization of chitosan as a carrier system is of concern for immunotherapeutic applications. © 2015 Turkish Journal of Immunology.Item Open Access Inflammasome induction and immunostimulatory effects of CpG-ODN loaded liposomes containing DC-cholesterol(Turkish Society of Immunology, 2013) Bayyurt, B.; Gürsel I.Objectives: This study aims to investigate the effects of cholesterol content and cationic property of liposomes on immune response. Materials and methods: Liposomes containing high amounts of 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-cholesterol) were prepared and loaded with K- and D-type CpG oligonucleotide (CpG-ODN) via dehydration-rehydration (DRV) method. After splenocytes and peritoneal exudate cells (PECs) primed with lipopolysaccharide (LPS) was incubated either with free or liposomal CpG-ODN counterparts, supernatants were collected and used in cytokine (IFN-g, IL-1γ and IL-1β) ELISA. Additionally, supernatants of PECs primed with LPS and stimulated with liposomes containing different doses of DC-cholesterol were collected and used in IL-1β ELISA assay. Results: Low-dose CpG-ODN loaded liposomal formulations induced higher immune activation than free CpG-ODN at the same dose. While high-dose liposomal CpG-ODN formulations decreased pro-inflammatory cytokine production in splenocytes, they increased the secretion of IL-1β. Inflammasome activation was increased in a dose dependent manner when PECs primed with LPS were incubated with only liposomes. Varying lipid molar ratios of DC-Cholesterol containing liposomes increased IL-1β production based on increasing lipid molar ratio. Conclusion: This study revealed that type and lipid ratio of liposomes may alter the cellular efficacy of the loaded immune-stimulatory agent and may initiate inflammasome activation. © 2014 Turkish Journal of Immunology.