Browsing by Subject "X-ray photoelectron spectroscopy studies"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Voltage contrast X-ray photoelectron spectroscopy reveals graphene-substrate interaction in graphene devices fabricated on the C-and Si-faces of SiC(American Institute of Physics Inc., 2015) Aydogan, P.; Arslan, E.; Cakmakyapan, S.; Özbay, Ekmel; Strupinski, W.; Süzer, ŞefikWe report on an X-ray photoelectron spectroscopy (XPS) study of two graphene based devices that were analyzed by imposing a significant current under +3 V bias. The devices were fabricated as graphene layers(s) on hexagonal SiC substrates, either on the C- or Si-terminated faces. Position dependent potential distributions (IR-drop), as measured by variations in the binding energy of a C1s peak are observed to be sporadic for the C-face graphene sample, but very smooth for the Si-face one, although the latter is less conductive. We attribute these sporadic variations in the C-face device to the incomplete electrical decoupling between the graphene layer(s) with the underlying buffer and/or substrate layers. Variations in the Si2p and O1s peaks of the underlayer(s) shed further light into the electrical interaction between graphene and other layers. Since the potential variations are amplified only under applied bias (voltage-contrast), our methodology gives unique, chemically specific electrical information that is difficult to obtain by other techniques.Item Open Access XPS-evidence for in-situ electrochemically-generated carbene formation(Elsevier Ltd., 2017) Gokturk, A. P.; Salzner, U.; Nyulászi, L.; Ulgut, B.; Kocabas, C.; Süzer, ŞefikStable N-heterocyclic carbenes (NHC) are a class of compounds that has attracted a huge amount of interest in the last decade. One way to prepare NHCs is through chemical or electrochemical reduction of 1,3-disubstituted imidazolium cations. We are presenting an in-situ electrochemical X-ray Photoelectron Spectroscopy (XPS) study where electrochemically reduced imidazolium cations lead to production of stable NHC. The electroactive imidazolium species is not only the reactant, but also part of the ionic liquid which serves as the electrolyte, the medium and the electroactive material. This allows us to directly probe the difference between the parent imidazolium ion and the NHC through the use of XPS. The interpretation of the results is supported by both observation of reversible redox peaks in the voltammogram and the density functional theory calculations.