Browsing by Subject "Web search engine"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Characteristics of Web-based textual communications(2012) Küçükyılmaz, TayfunIn this thesis, we analyze different aspects of Web-based textual communications and argue that all such communications share some common properties. In order to provide practical evidence for the validity of this argument, we focus on two common properties by examining these properties on various types of Web-based textual communications data. These properties are: All Web-based communications contain features attributable to their author and reciever; and all Web-based communications exhibit similar heavy tailed distributional properties. In order to provide practical proof for the validity of our claims, we provide three practical, real life research problems and exploit the proposed common properties of Web-based textual communications to find practical solutions to these problems. In this work, we first provide a feature-based result caching framework for real life search engines. To this end, we mined attributes from user queries in order to classify queries and estimate a quality metric for giving admission and eviction decisions for the query result cache. Second, we analyzed messages of an online chat server in order to predict user and mesage attributes. Our results show that several user- and message-based attributes can be predicted with significant occuracy using both chat message- and writing-style based features of the chat users. Third, we provide a parallel framework for in-memory construction of term partitioned inverted indexes. In this work, in order to minimize the total communication time between processors, we provide a bucketing scheme that is based on term-based distributional properties of Web page contents.Item Open Access Energy-price-driven query processing in multi-center web search engines(IEEE, 2011-07) Kayaaslan, Enver; Cambazoglu, B. B.; Blanco, R.; Junqueira, F. P.; Aykanat, CevdetConcurrently processing thousands of web queries, each with a response time under a fraction of a second, necessitates maintaining and operating massive data centers. For large-scale web search engines, this translates into high energy consumption and a huge electric bill. This work takes the challenge to reduce the electric bill of commercial web search engines operating on data centers that are geographically far apart. Based on the observation that energy prices and query workloads show high spatio-temporal variation, we propose a technique that dynamically shifts the query workload of a search engine between its data centers to reduce the electric bill. Experiments on real-life query workloads obtained from a commercial search engine show that significant financial savings can be achieved by this technique.Item Open Access A term-based inverted index partitioning model for efficient distributed query processing(Association for Computing Machinery, 2013) Cambazoglu, B. B.; Kayaaslan, E.; Jonassen, S.; Aykanat, CevdetIn a shared-nothing, distributed text retrieval system, queries are processed over an inverted index that is partitioned among a number of index servers. In practice, the index is either document-based or term-based partitioned. This choice is made depending on the properties of the underlying hardware infrastructure, query traffic distribution, and some performance and availability constraints. In query processing on retrieval systems that adopt a term-based index partitioning strategy, the high communication overhead due to the transfer of large amounts of data from the index servers forms a major performance bottleneck, deteriorating the scalability of the entire distributed retrieval system. In this work, to alleviate this problem, we propose a novel inverted index partitioning model that relies on hypergraph partitioning. In the proposed model, concurrently accessed index entries are assigned to the same index servers, based on the inverted index access patterns extracted from the past query logs. The model aims tominimize the communication overhead that will be incurred by future queries while maintaining the computational load balance among the index servers. We evaluate the performance of the proposed model through extensive experiments using a real-life text collection and a search query sample. Our results show that considerable performance gains can be achieved relative to the term-based index partitioning strategies previously proposed in literature. In most cases, however, the performance remains inferior to that attained by document-based partitioning. © 2013 ACM.