Browsing by Subject "Wearable motion sensors"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Classifying daily and sports activities invariantly to the positioning of wearable motion sensor units(IEEE, 2020) Barshan, Billur; Yurtman, ArasWe propose techniques that achieve invariance to the positioning of wearable motion sensor units on the body for the recognition of daily and sports activities. Using two sequence sets based on the sensory data allows each unit to be placed at any position on a given rigid body part. As the unit is shifted from its ideal position with larger displacements, the activity recognition accuracy of the system that uses these sequence sets degrades slowly, whereas that of the reference system (which is not designed to achieve position invariance) drops very fast. Thus, we observe a tradeoff between the flexibility in sensor unit positioning and the classification accuracy. The reduction in the accuracy is at acceptable levels, considering the convenience and flexibility provided to the user in the placement of the units. We compare the proposed approach with an existing technique to achieve position invariance and combine the former with our earlier methodology to achieve orientation invariance. We evaluate our proposed methodology on a publicly available data set of daily and sports activities acquired by wearable motion sensor units. The proposed representations can be integrated into the preprocessing stage of existing wearable systems without significant effort.Item Open Access Karşılıklı bilgi ölçütü kullanılarak giyilebilir hareket duyucu sinyallerinin aktivite tanıma amaçlı analizi(IEEE, 2014-04) Dobrucalı, Oğuzcan; Barshan, BillurGiyilebilir hareket duyucuları ile insan aktivitelerinin saptanmasında, uygun duyucu yapılanışının seçimi önem taşıyan bir konudur. Bu konu, kullanılacak duyucuların sayısının, türünün, sabitlenecekleri konum ve yönelimin belirlenmesi problemlerini içermektedir. Literatürde konuyla ilgili önceki çalışmalarda araştırmacılar, kendi seçtikleri duyucu yapılanışları ile diğer olası duyucu yapılanışlarını, söz konusu yapılanışlar ile insan aktivitelerini ayırt etme başarımlarına göre karşılaştırmışlardır. Ancak, söz konusu ayırt etme başarımlarının, kullanılan öznitelikler ve sınıflandırıcılara bağlı olduğu yadsınamaz. Bu çalışmada karşılıklı bilgi ölçütü kullanılarak duyucu yapılanışları, duyuculardan kaydedilen ham ölçümlerin zaman uzayındaki dağılımlarına göre belirlenmektedir. Bedenin farklı noktalarında bulunan ivmeölçer, dönüölçer ve manyetometrelerin ölçüm eksenleri arasından, gerçekleştirilen insan aktiviteleri hakkında en çok bilgi sağlayanları saptanmıştır.Item Open Access Novel noniterative orientation estimation for wearable motion sensor units acquiring accelerometer, gyroscope, and magnetometer measurements(IEEE, 2020) Yurtman, Aras; Barshan, BillurWe propose a novel noniterative orientation estimation method based on the physical and geometrical properties of the acceleration, angular rate, and magnetic field vectors to estimate the orientation of motion sensor units. The proposed algorithm aims that the vertical (up) axis of the earth coordinate frame is as close as possible to the measured acceleration vector and that the north axis of the earth makes an angle with the detected magnetic field vector as close as possible to the estimated value of the magnetic dip angle. We obtain the sensor unit orientation based on the rotational quaternion transformation between the earth and the sensor unit frames. We evaluate the proposed method by incorporating it into an activity recognition scheme for daily and sports activities, which requires accurately estimated sensor unit orientations to achieve invariance to the orientations at which the units are worn on the body. Using four different classifiers on a publicly available data set, the proposed methodology achieves an average activity recognition accuracy higher than the state-of-the-art methods, as well as being computationally efficient enough to be executed in real time.