BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Weak interactions"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum
    (2011) Kokabi, A.; Hosseini, M.; Saeedi, S.; Moftakharzadeh, A.; Vesaghi, M.A.; Fardmanesh, M.
    The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is derived, which leads to the derivation of the optical absorption spectrum in terms of ω 0 and ω 1. The dependency of the absorption peaks to the particle size and the particle mean spacing is also investigated. The absorption spectrum is measured for different Cu-C thin films with various Cu particle size and spacing. The experimental results of absorption are compared with the obtained analytical ones. © 2011 The Institution of Engineering and Technology.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Decompositional analysis of Kronecker structured Markov chains
    (Kent State University, 2008) Bao, Y.; Bozkur, I. N.; Dayar, T.; Sun, X.; Trivedi, K. S.
    This contribution proposes a decompositional iterative method with low memory requirements for the steadystate analysis ofKronecker structured Markov chains. The Markovian system is formed by a composition of subsystems using the Kronecker sum operator for local transitions and the Kronecker product operator for synchronized transitions. Even though the interactions among subsystems, which are captured by synchronized transitions, need not be weak, numerical experiments indicate that the solver benefits considerably from weak interactions among subsystems, and is to be recommended specifically in this case. © 2008, Kent State University.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An ontology-based approach to parsing Turkish sentences
    (Springer, 1998-10) Temizsoy, Murat; Çiçekli, ilyas
    The main problem with natural language analysis is the ambiguity found in various levels of linguistic information. Syntactic analysis with word senses is frequently not enough to resolve all ambiguities found in a sentence. Although natural languages are highly connected to the real world knowledge, most of the parsing architectures do not make use of it effectively In this paper, a new methodology is proposed for analyzing Turkish sentences which is heavily based on the constraints in the ontology. The methodology also makes use of morphological marks of Turkish which generally denote semantic properties. Analysis aims to find the propositional structure of the input utterance without constructing a deep syntactic tree, instead it utilizes a weak interaction between syntax and semantics. The architecture constructs a specific meaning representation on top of the analyzed propositional structure. © Springer-Verlag Berlin Heidelberg 1998.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback