Browsing by Subject "Vertically aligned"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Enhanced photoresponse of conformal TiO2/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition(AVS Science and Technology Society, 2015) Haider A.; Cansizoglu, H.; Cansizoglu, M. F.; Karabacak, T.; Okyay, Ali Kemal; Bıyıklı, NecmiIn this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO2) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO2 on Ag NRs via ALD. Following the growth of TiO2 on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 102 under a reverse bias of 3 V. © 2014 American Vacuum Society.Item Open Access Seed layer assisted hydrothermal deposition of low-resistivity ZnO thin films(Materials Research Society, 2017) Chubenko, E.; Bondarenko, V.; Ghobadi, Amir; Ulusoy, Gamze; Topallı, Kağan; Okyay, Ali KemalIn this work, we describe the combination of hydrothermal and atomic layer deposition (ALD) for growing low-resistivity ZnO polycrystalline continuous films. The effect of the thickness of ALD seed layers on the morphology of the hydrothermal ZnO films was studied. It was shown that ZnO films hydrothermally deposited on very thin seed layer consist of separate nanorods but in the case of 20 nm seed layer ZnO films transform to uniform continuous layers comprising of closely packed vertically aligned crystallites. Photoluminescence spectra were shown to exhibit broad band behavior in the visible range, corresponding to radiative recombination processes via oxygen defects of ZnO crystalline lattice, and narrow band in the UV region, associated with band-to-band recombination processes. It was shown that the resistivity of the obtained ZnO films is decreased gradually with the increase of ZnO films thickness and determined by the presence of crystal lattice defects in the seed layer.