Browsing by Subject "Urban visualization"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Conservative occlusion culling for urban visualization using a slice-wise data structure(Academic Press, 2007) Yılmaz, T.; Güdükbay, UğurIn this paper, we propose a framework for urban visualization using a conservative from-region visibility algorithm based on occluder shrinking. The visible geometry in a typical urban walkthrough mainly consists of partially visible buildings. Occlusion-culling algorithms, in which the granularity is buildings, process these partially visible buildings as if they are completely visible. To address the problem of partial visibility, we propose a data structure, called slice-wise data structure, that represents buildings in terms of slices parallel to the coordinate axes. We observe that the visible parts of the objects usually have simple shapes. This observation establishes the base for occlusion-culling where the occlusion granularity is individual slices. The proposed slice-wise data structure has minimal storage requirements. We also propose to shrink general 3D occluders in a scene to find volumetric occlusion. Empirical results show that significant increase in frame rates and decrease in the number of processed polygons can be achieved using the proposed slice-wise occlusion-culling as compared to an occlusion-culling method where the granularity is individual buildings. © 2007 Elsevier Inc. All rights reserved.Item Open Access Extraction of 3D navigation space in virtual urban environments(IEEE, 2005-09) Yılmaz, Türker; Güdükbay, UğurUrban scenes are one class of complex geometrical environments in computer graphics. In order to develop navigation systems for urban sceneries, extraction and cellulization of navigation space is one of the most commonly used technique providing a suitable structure for visibility computations. Surprisingly, there is not much work done for the extraction of the navigable area automatically. Urban models, except for the ones where the building footprints are used to generate the model, generally lack navigation space information. Because of this, it is hard to extract and discretize the navigable area for complex urban scenery. In this paper, we propose an algorithm for the extraction of navigation space for urban scenes in threedimensions (3D). Our navigation space extraction algorithm works for scenes, where the buildings are in high complexity. The building models may have pillars or holes where seeing through them is also possible. Besides, for the urban data acquired from different sources which may contain errors, our approach provides a simple and efficient way of discretizing both navigable space and the model itself. The extracted space can instantly be used for visibility calculations such as occlusion culling in 3D space. Furthermore, terrain height field information can be extracted from the resultant structure, hence providing a way to implement urban navigation systems including terrains.Item Open Access Stereoscopic urban visualization based on graphics processor unit(S P I E - International Society for Optical Engineering, 2008-09) Yilmaz, T.; Güdükbay, UğurWe propose a framework for the stereoscopic visualization of urban environments. The framework uses occlusion and view-frustum culling (VFC) and utilizes graphics hardware to speed up the rendering process. The occlusion culling is based on a slice-wise storage scheme that represents buildings using axis-aligned slices. This provides a fast and a low-cost way to access the visible parts of the buildings. View-frustum culling for stereoscopic visualization is carried out once for both eyes by applying a transformation to the culling location. Rendering using graphics hardware is based on the slice-wise building representation. The representation facilitates fast access to data that are pushed into the graphics procesing unit (GPU) buffers. We present algorithms to access this GPU data. The stereoscopic visualization uses off-axis projection, which we found more suitable for the case of urban visualization. The framework is tested on large urban models containing 7.8 million and 23 million polygons. Performance experiments show that real-time stereoscopic visualization can be achieved for large models. © 2008 Society of Photo-Optical Instrumentation Engineers.