Browsing by Subject "Ultrastructure"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Atomic force microscopy for the investigation of molecular and cellular behavior(Elsevier, 2016-10) Ozkan A.D.; Topal, A. E.; Dana, A.; Güler, Mustafa O.; Tekinay, A. B.The present review details the methods used for the measurement of cells and their exudates using atomic force microscopy (AFM) and outlines the general conclusions drawn by the mechanical characterization of biological materials through this method. AFM is a material characterization technique that can be operated in liquid conditions, allowing its use for the investigation of the mechanical properties of biological materials in their native environments. AFM has been used for the mechanical investigation of proteins, nucleic acids, biofilms, secretions, membrane bilayers, tissues and bacterial or eukaryotic cells; however, comparison between studies is difficult due to variances between tip sizes and morphologies, sample fixation and immobilization strategies, conditions of measurement and the mechanical parameters used for the quantification of biomaterial response. Although standard protocols for the AFM investigation of biological materials are limited and minor differences in measurement conditions may create large discrepancies, the method is nonetheless highly effective for comparatively evaluating the mechanical integrity of biomaterials and can be used for the real-time acquisition of elasticity data following the introduction of a chemical or mechanical stimulus. While it is currently of limited diagnostic value, the technique is also useful for basic research in cancer biology and the characterization of disease progression and wound healing processes.Item Unknown Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers(Elsevier, 2014) Canbolat, M. F.; Celebioglu A.; Uyar, TamerIn this study, we select naproxen (NAP) as a reference drug and electrospun poly (e-caprolactone) (PCL) nanofibers as a fibrous matrix for our drug-delivery system. NAP was complexed with beta-cyclodextrin (βCD) to form inclusion complex (NAP-βCD-IC) and then NAP-βCD-IC was incorporated into PCL nanofibers via electrospinning. The incorporation of NAP without CD-IC into electrospun PCL was also carried out for a comparative study. Our aim is to analyze the release profiles of NAP from PCL/NAP and PCL/NAP-βCD-IC nanofibers and we investigate the effect of CD-IC on the release behavior of NAP from the nanofibrous PCL matrix. The characterization of NAP-βCD-IC and the presence of CD-IC in PCL/NAP-βCD-IC nanofibers were studied by FTIR, XRD, TGA, NMR and SEM. The SEM imaging of the electrospun PCL/NAP and PCL/NAP-βCD-IC nanofibers reveal that the average fiber diameter of these nanofibers is around 300. nm, in addition, the aggregates of CD-IC in PCL/NAP-βCD-IC nanofibers is observed. The release study of NAP in buffer solution elucidate that the PCL/NAP-βCD-IC nanofibers have higher release amount of NAP than the PCL/NAP nanofibers due to the solubility enhancement of NAP by CD-IC.Item Unknown Effects of various intervals applied in classical music on the ultrastructure of reflector nerve and muscle terminals (A musical, medical, biological and experimental study)(2008) Mamedova L.; Metin I.; Ekici, N.; Huseyinov, M.; Huseyinova G.; Güner, S.S.The aim of the study was to explore the effects of these intonations on the reflector nerve and muscle terminals of guinea pigs using electron microscopic approaches. Spazmatic shrinking of myocyte myofibrils together with degenerative changes in myocytes and nerve terminals occur with the application of strained intonations. Transmission function is also damaged related with this situation. Clear relaxative extensions in myocyte myofibrils and decrease in activity of nerve terminals were determined with the application of more extensive intonations. © 2008 Academic Journals Inc.Item Open Access One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers(Pergamon Press, 2014) Celebioglu A.; Aytac Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, TamerOne-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.Item Open Access Raman enhancement on a broadband meta-surface(American Chemical Society, 2012-07-30) Ayas S.; Güner, H.; Türker, B.; Ekiz, O. O.; Dirisaglik, F.; Okyay, Ali Kemal; Dâna, A.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material.Item Unknown Spatial organization of functional groups on bioactive supramolecular glycopeptide nanofibers for differentiation of mesenchymal stem cells (MSCs) to brown adipogenesis(American Chemical Society, 2016-12) Caliskan, O. S.; Sardan, Ekiz M.; Tekinay, A. B.; Güler, Mustafa O.Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.Item Open Access Study of ultrastructural changes on the cochleae caused by various intonations used in classical music(2008) Mamedova L.; Kanter, M.; Güner, S.S.; Bulut, E.; Mercantepe, T.; Metin I.; Hüseyinova G.; Aktaş, C.; Ekici, N.The aim of this study is to investigate the differences on ultrastructure of the cochleae caused by different classic musical opuses with different intonations. Guinea pigs were grouped into 3, one of which was the control and the other two were the experimental groups. While the first group, which was the control, was not exposed to any music, the second group was exposed to classic musical opuses with extensive intervals (40 decibel) and third group was exposed to classical music opuses with strained intonations (60 decibel) for 6 h a day with 15 min-intervals for totally 10 days. Cochleae tissue samples were taken from the guinea pigs at the end of the tenth day. They were examined at the electron microscopic level. In addition to compansatris processes on the cochleae, thickening on the stereocilias of hair cells and basal membranes and proliferation on the synaptic terminalles of afferent nerves caused by extensive intonations were observed. Extremely obvious degenerative differences such as damage in neuroepitelial cells, nerves and synaptic terminalles as well as compansatris processes caused by strained intonations were determined. As a result of all these observations it was concluded that continuously listening to the strained intonations used in musical opuses has a very harmful effect on the auditory system. © 2008 Academic Journals Inc.