Browsing by Subject "Ultrasonography"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Deep-collapse operation of capacitive micromachined ultrasonic transducers(IEEE, 2011) Olcum, S.; Yamaner F. Y.; Bozkurt, A.; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.Item Open Access Effects of pulse duration on magnetostimulation thresholds(Wiley-Blackwell Publishing, Inc., 2015-06) Saritas, E. U.; Goodwill, P. W.; Conolly, S. M.Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magneto stimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27±5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 3040 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations. Results: The magnetostimulation limits decreased with increasing pulse duration (Tpulse). For Tpulse < 18 ms, the thresholds were significantly higher than at the longest pulse durations (p < 0.01, paired Wilcoxon signed-rank test). The normalized magnetostimulation threshold (BNorm) vs duration curve at all three frequencies agreed almost identically, indicating that the observed effect is independent of the operating frequency. At the shortest pulse duration (Tpulse ≈ 2 ms), the thresholds were approximately 24% higher than at the asymptotes. The thresholds decreased to within 4% of their asymptotic values for Tpulse > 20 ms. These trends were well characterized (R2 = 0.78) by a stretched exponential function given by BNorm = 1+αe?(Tpulse/β)γ, where the fitted parameters were α = 0.44, β = 4.32, and γ = 0.60. Conclusions: This work shows for the first time that the magnetostimulation thresholds decrease with increasing pulse duration, and that this effect is independent of the operating frequency. Normalized threshold vs duration trends are almost identical for a 20-fold range of frequencies: the thresholds are significantly higher at short pulse durations and settle to within 4% of their asymptotic values for durations longer than 20 ms. These results emphasize the importance of matching the human-subject experiments to the imaging conditions of a particular setup. Knowing the dependence of the safety limits to all contributing factors is critical for increasing the time-efficiency of imaging systems that utilize time-varying magnetic fields. © 2015 American Association of Physicists in Medicine.Item Open Access Optimization of the gain-bandwidth product of capacitive micromachined ultrasonic transducers(IEEE, 2005-12) Olcum, S.; Senlik, M. N.; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (cMUT) have large bandwidths, but they typically have low conversion efficiencies. This paper defines a performance measure in the form of a gain-bandwidth product and investigates the conditions in which this performance measure is maximized. A Mason model corrected with finite-element simulations is used for the purpose of optimizing parameters. There are different performance measures for transducers operating in transmit, receive, or pulse-echo modes. Basic parameters of the transducer are optimized for those operating modes. Optimized values for a cMUT with silicon nitride membrane and immersed in water are given. The effect of including an electrical matching network is considered. In particular, the effect of a shunt inductor in the gain-bandwidth product is investigated. Design tools are introduced, which are used to determine optimal dimensions of cMUTs with the specified frequency or gain response.Item Open Access Parametric nonlinear lumped element model for circular CMUTs in collapsed mode(2014) Aydoǧdu, E.; Ozgurluk, A.; Atalar, Abdullah; Köymen, HayrettinWe present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large- and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations. © 2014 IEEE.