Browsing by Subject "Ultra-small"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution(Springer Netherlands, 2016-05) Demirel, A.; Öztaş T.; Kurşungöz, C.; Yılmaz, İ.; Ortaç, B.We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295–400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.Item Open Access Synthesis of ultra-small Si / Ge semiconductor nano-particles using electrochemistry(Elsevier, 2012) Alkis, S.; Ghaffari, M.; Okyay, Ali KemalIn this paper, we describe the formation of colloidal Si/Ge semiconductor nano-particles by electrochemical etching of Ge quantum dots (GEDOT), Silicon-Germanium graded layers (GRADE) and Silicon-Germanium multi-quantum well (MQW) structures which are prepared on Silicon wafers using low pressure chemical vapor deposition (LPCVD) technique. The formation of Si/Ge nano-particles is verified by transmission electron microscope (TEM) images and photoluminescence (PL) measurements. The Si/Ge nano-particles obtained from GEDOT and GRADE structures, gave blue emissions, upon 250 nm, and 300 nm UV excitations. However, the nano-particles obtained from the MQW structure did exhibit various color emissions (orange, blue, green and red) upon excitation with 250 nm, 360 nm, 380 nm and 400 nm wavelength light.