Browsing by Subject "Two Dimensional (2 D)"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Focusing of THz waves with a microsize parabolic reflector made of graphene in the free space(Springer International Publishing, 2017) Oguzer T.; Altintas, A.; Nosich A.I.Background: The scattering of H- and E-polarized plane waves by a two-dimensional (2-D) parabolic reflector made of graphene and placed in the free space is studied numerically. Methods: To obtain accurate results we use the Method of Analytical Regularization. Results: The total scattering cross-section and the absorption cross-section are computed, together with the field magnitude in the geometrical focus of reflector. The surface plasmon resonances are observed in the H-case. The focusing ability of the reflector is studied in dependence of graphene’s chemical potential, frequency, and reflector’s depth. Conclusions: It is found that there exists an optimal range of frequencies where the focusing ability reaches maximum values. The reason is the quick degradation of graphene’s surface conductivity with frequency. © 2017, The Author(s).Item Open Access Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: a first-principles perspective to recent synthesis(American Institute of Physics Inc., 2018) Kecik D.; Onen, A.; Konuk, M.; Gürbüz, E.; Ersan, F.; Cahangirov, S.; Aktürk, E.; Durgun, Engin; Çıracı, SalimPotential applications of bulk GaN and AlN crystals have made possible single and multilayer allotropes of these III-V compounds to be a focus of interest recently. As of 2005, the theoretical studies have predicted that GaN and AlN can form two-dimensional (2D) stable, single-layer (SL) structures being wide band gap semiconductors and showing electronic and optical properties different from those of their bulk parents. Research on these 2D structures have gained importance with recent experimental studies achieving the growth of ultrathin 2D GaN and AlN on substrates. It is expected that these two materials will open an active field of research like graphene, silicene, and transition metal dichalcogenides. This topical review aims at the evaluation of previous experimental and theoretical works until 2018 in order to provide input for further research attempts in this field. To this end, starting from three-dimensional (3D) GaN and AlN crystals, we review 2D SL and multilayer (ML) structures, which were predicted to be stable in free-standing states. These are planar hexagonal (or honeycomb), tetragonal, and square-octagon structures. First, we discuss earlier results on dynamical and thermal stability of these SL structures, as well as the predicted mechanical properties. Next, their electronic and optical properties with and without the effect of strain are reviewed and compared with those of the 3D parent crystals. The formation of multilayers, hence prediction of new periodic layered structures and also tuning their physical properties with the number of layers are other critical subjects that have been actively studied and discussed here. In particular, an extensive analysis pertaining to the nature of perpendicular interlayer bonds causing planar GaN and AlN to buckle is presented. In view of the fact that SL GaN and AlN can be fabricated only on a substrate, the question of how the properties of free-standing, SL structures are affected if they are grown on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed. © 2018 Author(s).Item Open Access Investigation of new two-dimensional materials derived from stanene(Elsevier, 2017-09) Fadaie, M.; Shahtahmassebi, N.; Roknabad, M. R.; Gulseren, O.In this study, we have explored new structures which are derived from stanene. In these new proposed structures, half of the Sn atoms, every other Sn atom in two-dimensional (2D) buckled hexagonal stanene structure, are replaced with a group- IV atom, namely C, Si or Ge. So, we investigate the structural, electronic and optical properties of SnC, SnGe and SnSi by means of density functional theory based first-principles calculations. Based on our structure optimization calculations, we conclude that while SnC assumes almost flat structure, the other ones have buckled geometry like stanene. In terms of the cohesive energy, SnC is the most stable structure among them. The electronic properties of these structures strongly depend on the substituted atom. We found that SnC is a large indirect band gap semiconductor, but SnSi and SnGe are direct band gap ones. Optical properties are investigated for two different polarization of light. In all structures considered in this study, the optical properties are anisotropic with respect to the polarization of light. While optical properties exhibit features at low energies for parallel polarization, there is sort of broad band at higher energies after 5 eV for perpendicular polarization of the light. This anisotropy is due to the 2D nature of the structures. © 2017 Elsevier B.V.Item Open Access Lateral and vertical heterostructures of h-GaN/h-AlN: electron confinement, band lineup, and quantum structures(American Chemical Society, 2017-11) Onen, A.; Kecik, D.; Durgun, Engin; Çıracı, SalimLateral and vertical heterostructures constructed of two-dimensional (2D) single-layer h-GaN and h-AlN display novel electronic and optical properties and diverse quantum structures to be utilized in 2D device applications. Lateral heterostructures formed by periodically repeating narrow h-GaN and h-AlN stripes, which are joined commensurately along their armchair edges, behave as composite semiconducting materials. Direct-indirect characters of the fundamental band gaps and their values vary with the widths of these stripes. However, for relatively wider stripes, electronic states are confined in different stripes and make a semiconductor-semiconductor junction with normal band alignment. This way one-dimensinonal multiple quantum well structures can be generated with electrons and holes confined to h-GaN stripes. Vertical heterostructures formed by thin stacks of h-GaN and h-AlN are composite semiconductors with a tunable fundamental band gap. However, depending on the stacking sequence and number of constituent sheets in the stacks, the vertical heterostructure can transform into a junction, which displays staggered band alignment with electrons and holes separated in different stacks. The weak bonds between the cations and anions in adjacent layers distinguish these heterostructures from those fabricated using thin films of GaN and AlN thin films in wurtzite structure, as well as from van der Waals solids. Despite the complexities due to confinement effects and charge transfer across the interface, the band diagram of the heterostructures in the direct space and band lineup are conveniently revealed from the electronic structure projected to the atoms or layers. Prominent features in the optical spectra of the lateral composite structures are observed within the limits of those of 2D parent constituents; however, significant deviations from pristine 2D constituents are observed for vertical heterostructures. Important dimensionality effects are revealed in the lateral and vertical heterostructures.Item Open Access Microcavity lasers on polymer materials: Boundary integral equation modeling and experiments(IEEE, 2015-04) Nosich, A.I.; Smotrova, E.I.; Lebental, M.; Sukharevsky Ilya O.; Altıntaş, AyhanWe consider the modeling and experiments with polymer dye-doped lasers shaped as thin flat cavities, allowing one to consider them as two-dimensional (2-D) active cavities. We focus our modeling on the H-polarized electromagnetic field in a kite-shaped laser. Assuming that the lasing-mode frequency is real-valued, we look for it together with the corresponding threshold value of material gain. Such electromagnetic-field problem is reduced to the Muller set of the boundary integral equations (MBIE), discretization of which yields determinantal equation. Numerical results reveal various types of modes existing in the kite including the perturbed whispering gallery (WG) modes that have the lowest thresholds. Their far-field emission patterns show good agreement with the measurements. © 2015 IEEE.Item Open Access Modulation of electronic properties in laterally and commensurately repeating graphene and boron nitride composite nanostructures(American Chemical Society, 2015) Özçelik, V. O.; Durgun, Engin; Çıracı, SalimGraphene and hexagonal boron nitride (h-BN) nanoribbons of diverse widths and edge geometries are laterally repeated to form commensurate, single-layer, hybrid honeycomb structures. The resulting composite materials appear as continuous, one atom thick stripes of graphene and BN having the average mechanical properties of constituent structures. However, depending on the widths of constituent stripes they can be metal or semiconductor with band gaps in the energy range of the visible light. These two-dimensional (2D) composite materials allow strong dimensionality in electrical conductivity and undergo transition from 2D to one-dimensional (1D) metal in a 2D medium, resulting in multichannel narrow conductors. As for the composite ribbons, such as one dielectric BN stripe placed between two graphene stripes with bare zigzag edges, charge separation of opposite polarity is possible under applied electric field and they exhibit resonant tunneling effects at nanoscale. Graphene/BN composite materials also form stable single-wall nanotubes with zigzag or armchair geometries.Item Open Access Test of accuracy of the generalized boundary conditions in the scattering by thin dielectric strips(IEEE, 2014-05) Nosich, A. I.; Shapoval, O. V.; Sukharevsky, Ilya O.; Altıntaş, AyhanThe two-dimensional (2D) scattering of the E and H-polarized plane electromagnetic waves by a free-standing thinner than the wavelength dielectric strip is considered numerically. Two methods are compared: singular integral equations (SIE) on the strip median line obtained from the generalized boundary conditions for a thin dielectric layer and Muller boundary integral equations (BIE) for arbitrarily thick strip. The comparison shows the domain of acceptable accuracy of approximate model derived for thin dielectric strips. © 2014 IEEE.Item Open Access Tuning electronic properties of monolayer hexagonal boron phosphide with group III-IV-V dopants(American Chemical Society, 2017-02) Onat, B.; Hallioglu, L.; Ipek, S.; Durgun, EnginAn extensive study on doping of two-dimensional (2D) hexagonal boron phosphide (h-BP) which is a direct band gap semiconductor was performed by using ab initio methods based on spin-polarized density functional theory. The interaction of group III-IV-V elements with h-BP is explored, considering both adsorption and substitution cases, and the resulting structural and electronic properties are examined. The variation of adsorption (substitution) energies and band gap values are systematically analyzed and trends are identified. Upon adsorption, the most of the elements bound on top of P atom forming dumbbell geometry which generates characteristic spin-polarized impurity states. The substitution of B or P by group III-IV-V elements can produce extra electrons/holes which lead to n-type and p-type doping for adequate cases. Additionally, doping can further generate impurity resonant states. Functionalization of h-BP with adatoms can tune the electronic structure and would be useful for nanoelectronic applications in low-dimensions.