Browsing by Subject "Tunnel oxides"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access 2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices(IEEE, 2014-08) El-Atab, N.; Özcan, Ayşe; Alkış, Sabri; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding Silicon Nanoparticles (Si-NPs) in ZnO based charge trapping memory devices is studied. Si-NPs are fabricated by laser ablation of a silicon wafer in deionized water followed by sonication and filtration. The active layer of the memory was deposited by Atomic Layer Deposition (ALD) and spin coating technique was used to deliver the Si-NPs across the sample. The nanoparticles provided a good retention of charges (>10 years) in the memory cells and allowed for a large threshold voltage (Vt) shift (3.4 V) at reduced programming voltages (1 V). The addition of ZnO to the charge trapping media enhanced the electric field across the tunnel oxide and allowed for larger memory window at lower operating voltages. © 2014 IEEE.Item Open Access ZnO based charge trapping memory with embedded nanoparticles(IEEE, 2012) Rizk, A.; Oruç, Feyza B.; Okyay, Ali Kemal; Nayfeh, A.A thin film ZnO charge trapping memory cell with embedded nanoparticles is demonstrated by Physics Based TCAD simulation. The results show 3V increase in the Vt shift due to the nanoparticles for the same operating voltage. In addition a 6V reduction in the programming voltage is obtained due the nanoparticles. In addition, the effect of the trapping layer and tunnel oxide scaling on the 10 year retention time is studied. © 2012 IEEE.