Browsing by Subject "Tungsten Oxide"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A complementary electrochromic device with highly improved performance based on brick-like hydrated tungsten trioxide film(American Scientific Publishers, 2012) Jiao, Z.; Wang, J.; Ke, L.; Sun, X. W.; Demir, Hilmi VolkanUniform and well adhesive nanostructured hydrated tungsten trioxide (3WO 3•H 2O) films were grown on fluorine doped tin oxide (FTO) substrate via a facile and template-free crystal-seed-assisted hydrothermal method by addition of ammonium sulfate ((NH 4) 2SO 4) and hydrogen peroxide (H 2O 2). X-ray diffraction (XRD) studies indicated that the films are of orthorhombic structure. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis showed that the film was composed of brick-like nanostructures with a preferred growing direction along (002). The influence of seed layer, (NH 4) 2SO 4 and H 2O 2 on the products were also studied. The film showed good cyclic stability, comparable switching speed and coloration efficiency (30.1 cm 2 C -1). A complementary electrochromic device based on the film and Prussian blue depicted highly improved color contrast, coloration/bleaching response (1.8 and 3.7 s respectively) and coloration efficiency (164.6 cm 2 C -1).Item Open Access Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes(Wiley-VCH Verlag, 2014) Yang, X.; Mutlugun, E.; Zhao, Y.; Gao, Y.; Leck, K. S.; Ma, Y.; Ke, L.; Tan, S. T.; Demir, Hilmi Volkan; Sun, X. W.A highly efficient and stable QLED using an inorganic WO3 nanoparticle film as a hole injection layer is demonstrated.The resulting WO3 nanoparticle-based QLEDs also exhibit superior performance compared to that of the present PEDOT:PSS-based QLEDs. The results indicate that WO3 nanoparticles are promising solution-processed buffer layer materials and serve as a strong candidate for QLED technology towards the practical applications in the next-generation lighting and displays. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.