Browsing by Subject "Truncation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bivariate distribution and the hazard functions when a component is randomly truncated(Elsevier, 1997-01) Gürler, Ü.In random truncation models one observes the i.i.d. pairs (Ti≤Yi), i=1, ..., n. If Y is the variable of interest, then T is another independent variable which prevents the complete observation of Y and random left truncation occurs. Such a type of incomplete data is encountered in medical studies as well as in economy, astronomy, and insurance applications. Let (Y, Y) be a bivariate vector of random variables with joint distribution function F(y, x) and suppose the variable Y is randomly truncated from the left. In this study, nonparametric estimators for the bivariate distribution and hazard functions are considered. A nonparametric estimator for F(y, x) is proposed and an a.s. representation is obtained. This representation is used to establish the consistency and the weak convergence of the empirical process. An expression for the variance of the asymptotic distribution is presented and an estimator is proposed. Bivariate "diverse-hazard" vector is introduced which captures the individual and joint failure behaviors of the random variables in opposite "time" directions. Estimators for this vector are presented and the large sample properties are discussed. Possible applications and a moderate size simulation study are also presented. © 1997 Academic Press.Item Open Access Covariance function of a bivariate distribution function estimator for left truncated and right censored data(Institute of Statistical Science, Academia Sinica, 1998) Gijbelsi I.; Gürler, Ü.In left truncation and right censoring models one observes i.i.d. samples from the triplet (T, Z, δ) only if T ≤ Z, where Z = min(Y, C) and δ is one if Z = Y and zero otherwise. Here, Y is the variable of interest, T is the truncating variable and C is the censoring variable. Recently, Gürler and Gijbels (1996) proposed a nonparametric estimator for the bivariate distribution function when one of the components is subject to left truncation and right censoring. An asymptotic representation of this estimator as a mean of i.i.d. random variables with a negligible remainder term has been developed. This result establishes the convergence to a two time parameter Gaussian process. The covariance structure of the limiting process is quite complicated however, and is derived in this paper. We also consider the special case of censoring only. In this case the general expression for the variance function reduces to a simpler formula.Item Open Access Variance of the bivariate density estimator for left truncated right censored data(Elsevier, 1999) Prewitt, K.; Gürler, Ü.In this study the variance of the bivariate kernel density estimators for the left truncated and right censored (LTRC) observations are considered. In LTRC models, the complete observation of the variable Y is prevented by the truncating variable T and the censoring variable C. Consequently, one observes the i.i.d, samples from the triplets (T,Z,delta) only if T less than or equal to Z, Z=min(Y, C) and delta is one if Z=Y and zero otherwise. Gurler and Prewitt (1997, submitted for publication) consider the estimation of the bivariate density function via nonparametric kernel methods and establish an i.i.d. representation of their estimators. Asymptotic variance of the i.i.d, part of their representation is developed in this paper. Application of the results are also discussed for the data-driven and the least-squares cross validation bandwidth choice procedures. (C) 1999 published by Elsevier Science B.V. All rights reserved.