Bivariate distribution and the hazard functions when a component is randomly truncated

Date

1997-01

Authors

Gürler, Ü.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Multivariate Analysis

Print ISSN

0047-259X

Electronic ISSN

Publisher

Elsevier

Volume

60

Issue

1

Pages

20 - 47

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
15
downloads

Series

Abstract

In random truncation models one observes the i.i.d. pairs (Ti≤Yi), i=1, ..., n. If Y is the variable of interest, then T is another independent variable which prevents the complete observation of Y and random left truncation occurs. Such a type of incomplete data is encountered in medical studies as well as in economy, astronomy, and insurance applications. Let (Y, Y) be a bivariate vector of random variables with joint distribution function F(y, x) and suppose the variable Y is randomly truncated from the left. In this study, nonparametric estimators for the bivariate distribution and hazard functions are considered. A nonparametric estimator for F(y, x) is proposed and an a.s. representation is obtained. This representation is used to establish the consistency and the weak convergence of the empirical process. An expression for the variance of the asymptotic distribution is presented and an estimator is proposed. Bivariate "diverse-hazard" vector is introduced which captures the individual and joint failure behaviors of the random variables in opposite "time" directions. Estimators for this vector are presented and the large sample properties are discussed. Possible applications and a moderate size simulation study are also presented. © 1997 Academic Press.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)