BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Trimethylaluminum"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Preparation of Al 2O 3and AlN nanotubes by atomic layer deposition
    (Cambridge University Press, 2012) Ozgit-Akgun, Çagla; Kayacı, Fatma; Dönmez, İnci; Çağatay, Engin; Uyar, Tamer; Bıyıklı, Necmi
    Al 2O 3 and AlN nanotubes were fabricated by depositing conformal thin films via atomic layer deposition (ALD) on electrospun nylon 66 (PA66) nanofiber templates. Depositions were carried out at 200°C, using trimethylaluminum (TMAl), water (H 2O), and ammonia (NH 3) as the aluminum, oxygen, and nitrogen precursors, respectively. Deposition rates of Al 2O 3 and AlN at this temperature were ∼1.05 and 0.86 Å/cycle. After the depositions, Al 2O 3- and AlN-coated nanofibers were calcinated at 500°C for 2 h in order to remove organic components. Nanotubes were characterized by using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). AlN nanotubes were polycrystalline as determined by high resolution TEM (HR-TEM) and selected area electron diffraction (SAED). TEM images of all the samples reported in this study indicated uniform wall thicknesses. © 2012 Materials Research Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition
    (2012) Ozgit, C.; Donmez I.; Alevli, M.; Bıyıklı, Necmi
    We report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH 3). At 185 °C, deposition rate saturated for TMA and NH 3 doses starting from 0.05 and 40 s, respectively. Saturative surface reactions between TMA and NH 3 resulted in a constant growth rate of ∼ 0.86 Å/cycle from 100 to 200 °C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (≤ 225 °C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 °C were investigated by X-ray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 °C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at ∼ 5.8 eV and an optical transmittance of > 95% in the visible region of the spectrum. © 2011 Elsevier B.V. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback