Browsing by Subject "Transmitters"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Binary signaling under subjective priors and costs as a game(Institute of Electrical and Electronics Engineers Inc., 2019) Sarıtaş, S.; Gezici, Sinan; Yüksel, S.; Teel, A. R.; Egerstedt, M.Many decentralized and networked control problems involve decision makers which have either misaligned criteria or subjective priors. In the context of such a setup, in this paper we consider binary signaling problems in which the decision makers (the transmitter and the receiver) have subjective priors and/or misaligned objective functions. Depending on the commitment nature of the transmitter to his policies, we formulate the binary signaling problem as a Bayesian game under either Nash or Stackelberg equilibrium concepts and establish equilibrium solutions and their properties. In addition, the effects of subjective priors and costs on Nash and Stackelberg equilibria are analyzed. It is shown that there can be informative or non-informative equilibria in the binary signaling game under the Stackelberg assumption, but there always exists an equilibrium. However, apart from the informative and non-informative equilibria cases, under certain conditions, there does not exist a Nash equilibrium when the receiver is restricted to use deterministic policies. For the corresponding team setup, however, an equilibrium typically always exists and is always informative. Furthermore, we investigate the effects of small perturbations in priors and costs on equilibrium values around the team setup (with identical costs and priors), and show that the Stackelberg equilibrium behavior is not robust to small perturbations whereas the Nash equilibrium is.Item Open Access Computer aided frequency planning for the radio and TV broadcasts(Institute of Electrical and Electronics Engineers, 1996-06) Altıntaş, Ayhan; Ocalı, O.; Topçu, Satılmış; Tanyer, S. G.; Köymen, HayrettinThe frequency planning of the VHF and UHF broadcasts in Turkey is described. This planning is done with the aid of computer databases and digital terrain map. The frequency offset is applied whenever applicable to increase the channel capacity. The offset assignment is done through simulated annealing algorithm. The international rules and regulations concerning Turkey are also considered.Item Open Access Convexity properties of detection probability under additive Gaussian noise: optimal signaling and jamming strategies(IEEE, 2013) Dulek, B.; Gezici, Sinan; Arıkan, OrhanIn this correspondence, we study the convexity properties for the problem of detecting the presence of a signal emitted from a power constrained transmitter in the presence of additive Gaussian noise under the Neyman-Pearson (NP) framework. It is proved that the detection probability corresponding to the α-level likelihood ratio test (LRT) is either strictly concave or has two inflection points such that the function is strictly concave, strictly convex, and finally strictly concave with respect to increasing values of the signal power. In addition, the analysis is extended from scalar observations to multidimensional colored Gaussian noise corrupted signals. Based on the convexity results, optimal and near-optimal time sharing strategies are proposed for average/peak power constrained transmitters and jammers. Numerical methods with global convergence are also provided to obtain the parameters for the proposed strategies.Item Open Access Frequency responses of ground-penetrating radars operating over highly lossy grounds(IEEE, 2002) Oğuz, U.; Gürel, LeventThe finite-difference time-domain (FDTD) method is used to investigate the effects of highly lossy grounds and the frequency-band selection on ground-penetrating-radar (GPR) signals. The ground is modeled as a heterogeneous half space with arbitrary background permittivity and conductivity. The heterogeneities encompass both embedded scatterers and surface holes, which model the surface roughness. The decay of the waves in relation to the conductivity of the ground is demonstrated. The detectability of the buried targets is investigated with respect to the operating frequency of the GPR, the background conductivity of the ground, the density of the conducting inhomogeneities in the ground, and the surface roughness. The GPR is modeled as transmitting and receiving antennas isolated by conducting shields, whose inner walls are coated with absorbers simulated by perfectly matched layers (PML). The feed of the transmitter is modeled by a single-cell dipole with constant current density in its volume. The time variation of the current density is selected as a smooth pulse with arbitrary center frequency, which is referred to as the operating frequency of the GPR.Item Open Access Jamming bandits-a novel learning method for optimal jamming(Institute of Electrical and Electronics Engineers Inc., 2016) Amuru, S.; Tekin, C.; Van Der Schaar, M.; Buehrer, R.M.Can an intelligent jammer learn and adapt to unknown environments in an electronic warfare-type scenario? In this paper, we answer this question in the positive, by developing a cognitive jammer that adaptively and optimally disrupts the communication between a victim transmitter-receiver pair. We formalize the problem using a multiarmed bandit framework where the jammer can choose various physical layer parameters such as the signaling scheme, power level and the on-off/pulsing duration in an attempt to obtain power efficient jamming strategies. We first present online learning algorithms to maximize the jamming efficacy against static transmitter-receiver pairs and prove that these algorithms converge to the optimal (in terms of the error rate inflicted at the victim and the energy used) jamming strategy. Even more importantly, we prove that the rate of convergence to the optimal jamming strategy is sublinear, i.e., the learning is fast in comparison to existing reinforcement learning algorithms, which is particularly important in dynamically changing wireless environments. Also, we characterize the performance of the proposed bandit-based learning algorithm against multiple static and adaptive transmitter-receiver pairs.Item Open Access Noncoherent space-time coding: an algebraic perspective(IEEE, 2005-06) El Gamal, H.; Aktas, D.; Damen, M. O.The design of space-time signals for noncoherent block-fading channels where the channel state information is not known a priori at the transmitter and the receiver is considered. In particular, a new algebraic formulation for the diversity advantage design criterion is developed. The new criterion encompasses, as a special case, the well-known diversity advantage for unitary space-time signals and, more importantly, applies to arbitrary signaling schemes and arbitrary channel distributions. This criterion is used to establish the optimal diversity-versus-rate tradeoff for training based schemes in block-fading channels. Our results are then specialized to the class of affine space-time signals which allows for a low complexity decoder. Within this class, space-time constellations based on the threaded algebraic space-time (TAST) architecture are considered. These constellations achieve the optimal diversity-versus-rate tradeoff over noncoherent block-fading channels and outperform previously proposed codes in the considered scenarios as demonstrated by the numerical results. Using the analytical and numerical results developed in this paper, nonunitary space-time codes are argued to offer certain advantages in block-fading channels where the appropriate use of coherent space-time codes is shown to offer a very efficient solution to the noncoherent space-time communication paradigm.Item Open Access Optimization of the transmitter-receiver separation in the ground-penetrating radar(IEEE, 2003-03) Gürel, Levent; Oğuz, U.The finite-difference time-domain method is applied to simulate three-dimensional subsurface-scattering problems, involving a ground-penetrating-radar (GPR) model consisting of two transmitters and a receiver. The receiving antenna is located in the middle of the twos identical transmitters, which are fed 180degrees out of phase. This configuration implies the existence of a symmetry plane in the middle of two transmitters and the cancellation of the direct signals coupled from the transmitters at the receiver location. The antenna polarizations and their separations are arbitrary. The transmitter-receiver-transmitter configured GPR model is optimized in terms of the scattered energy observed at the receiver by varying the antenna separation. Many simulation results are used to demonstrate the effects of the antenna separation and the optimal separation encountered for a specific target and GPR scenario.Item Open Access Secrecy rate and harvested energy trade-off for MISO channels with finite-alphabet inputs(IEEE, 2018-05) Aghdam, Sina Rezaei; Duman, Tolga M.We focus on transmit signal design for multiple- input single-output (MISO) wiretap channels with simultaneous wireless information and power transfer (SWIPT). Assuming that the channel inputs are drawn from standard constellation sets, we formulate secrecy rate maximization problems subject to power and harvested energy constraints. We tackle these problems under two different assumptions on the channel state information (CSI) at the transmitter. First, we consider a scenario in which the transmitter knows the CSI for both the information receiver and the energy receiver (potential eavesdropper), and we propose a precoder optimization approach. Then, we investigate the case where only perfect CSI of the information receiver is available along with the statistical CSI of the energy receiver. Our numerical results demonstrate the efficacy of the proposed solutions.Item Open Access Simulation of real beam ground mapping mode of a pulsed radar(IEEE, 2006) Onart, Serkan; Arıkan, OrhanA Matlab© based realistic simulation software is developed for Real Beam Ground Mapping (RBGM) mode of a pulsed air-borne radar. The developed software successfully simulates the effects of basic radar parameters for the real beam mapping mode. A zero level Digital Terrain Elevation Data (DiTED) is used for terrain model. Radar return is calculated for a stationary antenna at a given height from the ground and tilt angle. Simulations can represent the effects of terrain occulting, shadowing, incidence angle depended scattering, range attenuation, antenna parameters (pattern, gain, beam width e.g.) and transmitter parameters (frequency, output power, pulse width, PRF e.g.) on radar returns for both sector and circular scans.Item Open Access Synchronization and chaotic masking scheme based on occasional coupling(American Physical Society, 2000) Morgül, Ö.Synchronization and a related message transmission scheme using synchronized chaotic systems was presented for discrete-time systems. The scheme was based on occasional coupling of transmitter and receiver systems. The occasional synchronization scheme consists of the application of synchronization and autonomous phases periodically. The study showed that the proposed scheme was robust with respect to noise and parameter mismatch under certain conditions.Item Open Access Three-dimensional FDTD modeling of a GPR(IEEE, 2000) Oğuz, Uğur; Gürel, LeventThe power and flexibility of the Finite-Difference Time-Domain (FDTD) method are combined with the accuracy of the perfectly-matched layer (PML) absorbing boundary conditions to simulate realistic ground-penetrating radar (GPR) scenarios. Three-dimensional geometries containing modes of radar units, buried objects and surrounding environments are simulated. Simulation results are analyzed in detail.