BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Transition metals"

Filter results by typing the first few letters
Now showing 1 - 12 of 12
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Anisotropic electronic, mechanical, and optical properties of monolayer WTe2
    (American Institute of Physics Inc., 2016) Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F. M.
    Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (Td phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the Td phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G0W0 calculations, we predict that the absorption spectrum of Td-WTe2 monolayer is strongly direction dependent and tunable by tensile strain.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors
    (Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.
    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: a first-principles perspective to recent synthesis
    (American Institute of Physics Inc., 2018) Kecik D.; Onen, A.; Konuk, M.; Gürbüz, E.; Ersan, F.; Cahangirov, S.; Aktürk, E.; Durgun, Engin; Çıracı, Salim
    Potential applications of bulk GaN and AlN crystals have made possible single and multilayer allotropes of these III-V compounds to be a focus of interest recently. As of 2005, the theoretical studies have predicted that GaN and AlN can form two-dimensional (2D) stable, single-layer (SL) structures being wide band gap semiconductors and showing electronic and optical properties different from those of their bulk parents. Research on these 2D structures have gained importance with recent experimental studies achieving the growth of ultrathin 2D GaN and AlN on substrates. It is expected that these two materials will open an active field of research like graphene, silicene, and transition metal dichalcogenides. This topical review aims at the evaluation of previous experimental and theoretical works until 2018 in order to provide input for further research attempts in this field. To this end, starting from three-dimensional (3D) GaN and AlN crystals, we review 2D SL and multilayer (ML) structures, which were predicted to be stable in free-standing states. These are planar hexagonal (or honeycomb), tetragonal, and square-octagon structures. First, we discuss earlier results on dynamical and thermal stability of these SL structures, as well as the predicted mechanical properties. Next, their electronic and optical properties with and without the effect of strain are reviewed and compared with those of the 3D parent crystals. The formation of multilayers, hence prediction of new periodic layered structures and also tuning their physical properties with the number of layers are other critical subjects that have been actively studied and discussed here. In particular, an extensive analysis pertaining to the nature of perpendicular interlayer bonds causing planar GaN and AlN to buckle is presented. In view of the fact that SL GaN and AlN can be fabricated only on a substrate, the question of how the properties of free-standing, SL structures are affected if they are grown on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed. © 2018 Author(s).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Liquid crystalline mesophases of pluronics (L64, P65, and P123) and transition metal nitrate salts ([M(H2O)6](NO 3)2)
    (American Chemical Society, 2005) Demirörs, A. F.; Eser, B. E.; Dag, Ö.
    The triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers, Pluronics (L64, P65, and P123), form liquid crystalline (LC) mesophases with transition metal nitrate salts (TMS), [M(H2O) n] (NO3)2, in the presence and absence of free water in the media. In this assembly process, M-OH2 plays an important role as observed in a TMS:CnEOm (C nEOm is oligo(ethylene oxide) nonionic surfactants) system. The structure of the LC mesophases and interactions of the metal ion-nitrate ion and metal ion-Pluronic were investigated using microscopy (POM), diffraction (XRD), and spectroscopy (FTIR and micro-Raman) techniques. The TMS:L64 system requires a shear force for mesophase ordering to be observed using X-ray diffraction. However, TMS:P65 and TMS:P123 form well structured LC mesophases. Depending on the salt/Pluronic mole ratio, hexagonal LC mesophases are observed in the TMS:P65 systems and cubic and tetragonal LC mesophases in the TMS:P123 systems. The LC mesophase in the water/salt/Pluronic system is sensitive to the concentration of free (H2O) and coordinated water (M-OH2) molecules and demonstrates structural changes. As the free water is evaporated from the H2O:TMS:Pluronic LC mesophase (ternary mixture), the nitrate ion remains free in the media. However, complete evaporation of the free water molecules enforces the coordination of the nitrate ion to the metal ion in all TMS:Pluronic systems. © 2005 American Chemical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide
    (American Chemical Society, 2003) Dag, Ö.; Alayoǧlu, S.; Tura, C.; Çelik, Ö.
    Lyotropic liquid-crystalline (LLC), transition metal salt: oligo(ethylene oxide) nonionic surfactant (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm), systems have been studied by means of diffraction, microscopy, and spectroscopy to elucidate the structural, thermal, and templating properties. In the system, the lyotropic salts of transition metal aqua complexes, such as chlorides and sulfates, are insoluble and do not form a LC phase in CnEOm-type nonionic surfactants. However, the transition metal aqua complexes of nitrates and perchlorates are soluble and form 2D and 3D hexagonal and cubic mesophases. These phases are stable in a very broad range of salt:surfactant mole ratios (1.0 and 3.6). The nitrate salts form a hexagonal mesophase. However, in high nitrate salt concentrations (above 3.2 salt:surfactant mole ratio), the salt crystals are either insoluble or the salt:surfactant mixtures are in a cubic mesophase. The structure and thermal properties of the new system are determined by the solubility of the transition metal salts, the concentration of the salt, and the surfactant type. The LC [Cd(H2O)4](NO3)2: C12EO10 mesophase has been reacted with H2S gas to produce solid mesostructured CdS (meso-CdS). The meso-CdS particles are spherical in morphology and are made up of hierarchical organization of 2-4-nm CdS particles. The salt:surfactant LLC systems and the solid meso-CdS have been investigated using polarized optical microscopy, X-ray diffraction, Fourier transform infrared, Fourier transform Raman, and UV-vis absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanoarchitectonics of mesoporous M2P2O7 (M = Mn(II), Co(II), and Ni(II)) and M2–xCoxP2O7 and transformation to their metal hydroxides with decent charge capacity in alkali media
    (American Chemical Society, 2024-10-02) Ulu, Işıl; Ulgut, Burak; Dağ, Ömer
    A general synthetic method has been developed to synthesize spherical mesoporous metal pyrophosphate (m-M2P2O7) particles and to fabricate graphite rod-coated (GR-M2P2O7) electrodes, which are important as energy storage materials. The clear aqueous solution of the ingredients (namely, [M(H2O)6](NO3)2, H4P2O7, water, and P123) assembles, upon excess water evaporation, into a mesostructured M2HxP2O7(NO3)x·nH2O–P123 semisolid that is calcined to produce the spherical m-M2P2O7 (where M is Ni, Co, Mn, Ni/Co, or Mn/Co) particles, coated over GR, and calcined to fabricate the GR-M2P2O7 electrodes. The mesostructured and mesoporous materials are characterized using diffraction (XRD), spectroscopy (ATR-FTIR, XPS, and EDX), N2 adsorption–desorption, and imaging (SEM and TEM) techniques. The electrochemical/chemical investigations showed that the GR-M2P2O7 electrodes transform to β-M(OH)2 in alkali media. The spherical m-Ni2P2O7 particles transform into spherical ultrathin nanoflakes of β-Ni(OH)2. However, the m-Mn2P2O7 and m-Co2P2O7 particles transform to much thicker β-Mn(OH)2 and β-Co(OH)2 plate-like nanoparticles, respectively. The size and morphology of the β-M(OH)2 particle depend on the Ksp of the M2P2O7 and determine the charge capacity (CC) and specific capacitance (SC) of the electrodes. The β-Ni(OH)2 and β-Ni0.67Co0.33(OH)2 electrodes display high CC (129 and 170 mC/cm2, respectively) and SC (234.5 and 309 mF/cm2, respectively) values. However, these values are almost 10× smaller in β-Mn(OH)2, β-Co(OH)2, β-Mn1–xCox(OH)2, and cobalt-rich β-Ni1–xCox(OH)2 electrodes.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A new lyotropic liquid crystalline system: oligo(ethylene oxide) surfactants with [M(H2O)n]Xm transition metal complexes
    (Wiley, 2001) Çelik, Ö.; Dag, Ö.
    Coordinated water molecules induce the aggregation and self-assembly of the lyotropic liquid crystalline phase formed from non-ionic surfactants CnH2n+1(CH2CH2O)mOH and transition metal aqua complexes ([Ni(H2O)6](NO3)2, [Co(H2O)6](NO3)2, [Cd(H2O)4](NO3)2, and [Co(H2O)6]Cl2) into hexagonal (see schematic representation) and/or cubic structures. While the NiII and CoII complexes undergo recrystallization and phase separation at high complex concentrations, the ZnII and CdII complexes form cubic phases above metal/surfactant molar ratios of 3.2/1 at room temperature.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Persuasive evidence for electron–nuclear coupling in diluted magnetic colloidal nanoplatelets using optically detected magnetic resonance spectroscopy
    (American Chemical Society, 2019) Strassberg, R.; Delikanlı, Savaş; Barak, Y.; Dehnel, J.; Kostadinov, A.; Maikov, G.; Hernandez-Martinez, P. L.; Sharma, Manoj; Demir, Hilmi Volkan; Lifshitz, E.
    The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier–guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/Cd1–xMnxS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy. The host matrix, with a quasi-type II electronic configuration, introduces a dominant interaction between a photogenerated electron and a magnetic dopant. Furthermore, the data convincingly presents the interaction between an electron and nuclear spins of the doped ions located at neighboring surroundings, with consequent influence on the carrier’s spin relaxation time. The nuclear spin contribution by the magnetic dopants in colloidal nanoplatelets is considered here for the first time.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Red emission from copper-vacancy color centers in zinc sulfide colloidal nanocrystals
    (American Chemical Society, 2023-03-28) Thompson, S. M.; Şahin, Cüneyt; Yang, S.; Flatté, M. E.; Murray, C. B.; Bassett, L. C.; Kagan, C. R.
    Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for biosensing and optoelectronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit primarily R-Cu, which has been proposed to arise from the CuZn-VS complex, an impurity-vacancy point defect structure analogous to well-known quantum defects in other materials that produce favorable optical and spin dynamics. First-principles calculations confirm the thermodynamic stability and electronic structure of CuZn-VS. Temperature- and time-dependent optical properties of ZnS:Cu NCs show blueshifting luminescence and an anomalous plateau in the intensity dependence as temperature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based on thermally activated coupling between two manifolds of states inside the ZnS bandgap. Understanding of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining R-Cu centers in colloidal NC hosts, will greatly facilitate the development of CuZn-VS and related complexes as quantum point defects in ZnS.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Synthesis of mesostructured metal sulfide films using [M(H2O)n](NO3)2:P85 (M = Cd(II) and Zn(II)) liquid crystalline mesophases
    (2008) Türker, Y.; Dag, Ö.
    Transition metal salt-pluronic liquid crystalline (TMS-PLC) mesophases of A-P85, B-P85 and ((1 - x)A + xB)-P85 (where A is [Cd(H2O) 4](NO3)2, B is [Zn(H2O) 6](NO3)2 and P85 is a triblock copolymer, HO(CH2CH2O)26(CH2(CH 3)CHO)40(CH2CH2O)26H) have been used to produce mesostructured metal sulfide films. The TMS-PLC mesophases of A-P85, B-P85 and (A + B)-P85 are well ordered with a salt/P85 mole ratio between 3.0 and 11.0 with a 3D hexagonal structure. The reaction between the mesophases of A-P85, B-P85 and ((1 - x)A + xB)-P85 and H2S gas at room temperature produces mesostructured CdS, ZnS and Cd1-xZn xS films, respectively. The initial salt concentrations in the TMS-PLC phase determine the final Cd(ii) and Zn(ii) ions in the Cd 1-xZnxS crystal structure, where x can be controlled between 0.0 and 1.0. Fresh samples of the mesophase reacted under an H 2S atmosphere are continues films that slowly leach out excess P85 producing P85 rich dendrite domains and aggregates of 50 to 100 nm particles of mesostructured CdS, ZnS or Cd1-xZnxS. However, well homogenized TMS-PLC mesophases produce stable film samples upon H2S reaction.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Transition metals for the synthesis of glycopolymers and glycopolypeptides
    (Wiley-VCH Verlag, 2015) Islam, M.; Shaikh, A. Y.; Hotha, S.
    Glycopolymers and glycopolypeptides are an important class of molecules, which can self-assemble to various interesting biohybrid materials. It is envisaged that the glycans impart good immunological response, and the aliphatic or polypeptide backbone can give tertiary structure for the resulting glycopolymers. The major bottleneck in the synthesis of glycopolymers or glycopolypeptides is the access to suitable building blocks and polymerization methods. This review describes methods that have recently been explored for the successful synthesis of many useful glycomonomers that could be polymerized to afford glycopolymers and/or glycopolypeptides.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Transition-metal-ethylene complexes as high-capacity hydrogen-storage media
    (American Physical Society, 2006) Durgun, Engin; Çıracı, Salim; Zhou, W.; Yildirim, T.
    From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of ∼14wt%. Dimerization, polymerizations, and incorporation of the TM-ethylene complexes in nanoporous carbon materials are also discussed. Our results are quite remarkable and open a new approach to high-capacity hydrogen-storage materials discovery.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback