Browsing by Subject "Transfer matrix method"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Absorption enhancement of molecules in the weak plasmon-exciton coupling regime(Optical Society of American (OSA), 2014) Balci, S.; Karademir, E.; Kocabas, C.; Aydınlı, AtillaWe report on the experimental and theoretical investigations of enhancing the optical absorption of organic molecules in the weak plasmon-exciton coupling regime. A metal-organic hybrid structure consisting of dye molecules embedded in the polymer matrix is placed in close vicinity to thin metal films. We have observed a transition from a weak coupling regime to a strong coupling one as the thickness of the metal layer increases. The results indicate that absorption of the self-assembled J-aggregate nanostructures can be increased in the weak plasmon-exciton coupling regime and strongly quenched in the strong coupling regime. A theoretical model based on the transfer-matrix method qualitatively confirms the experimental results obtained from polarization-dependent spectroscopic reflection measurements.Item Open Access Electric field dependence of radiative recombination lifetimes in polar InGaN/GaN quantum heterostructures(IEEE, 2009) Sarı, Emre; Nizamoğlu, Sedat; Lee I.-H.; Baek J.-H.; Demir, Hilmi VolkanWe report on external electric field dependence of recombination lifetimes in polar InGaN/GaN quantum heterostructures. In our study, we apply external electric fields one order of magnitude less than and in opposite direction to the polarization-induced electrostatic fields inside the well layers. Under the increasing external electric field, we observe a decrease in carrier lifetimes (τ) and radiative recombination lifetimes (τr), latter showing a weaker dependence. Our results on τr show an agreement with our transfer matrix method based simulation results and demonstrate Fermi's golden rule in polar InGaN/GaN quantum heterostructures dependent on electric field. For our study, we grew 5 pairs of 2.5 nm thick In0.15Ga 0.85N quantum well and 7.5 nm thick GaN barrier layers in a p-i-n diode architecture using metal-organic chemical vapor deposition (MOCVD) on a c-plane sapphire substrate. Devices with 300 μm × 300 μm mesa size were fabricated using standard photolithography, reactive ion etching and metallization steps. We used indium-tin oxide (ITO) based semi-transparent contacts in top (p-GaN) layer for uniform application of electric field across the well layers. The fabricated devices were diced and mounted on a TO-can for compact testing. © 2009 IEEE.Item Open Access Experimental observation of cavity formation in composite metamaterials(Optical Society of American (OSA), 2008) Caglayan H.; Bulu I.; Loncar, M.; Özbay, EkmelIn this paper, we investigated one of the promising applications of left-handed metamaterials: composite metamaterial based cavities. Four different cavity structures operating in the microwave regime were constructed, and we observed cavity modes on the transmission spectrum with different quality factors. The effective permittivity and permeability of the CMM structure and cavity structure were calculated by use of a retrieval procedure. Subsequently, in taking full advantage of the effective medium theory, we modeled CMM based cavities as one dimensional Fabry-Perot resonators with a subwavelength cavity at the center. We calculated the transmission from the Fabry-Perot resonator model using the one-dimensional transfer matrix method, which is in good agreement with the measured result. Finally, we investigated the Fabry-Perot resonance phase condition for a CMM based cavity, in which the condition was satisfied at the cavity frequency. Therefore, our results show that it is possible to treat metamaterial based cavities as one-dimensional Fabry-Perot resonators with a subwavelength cavity. © 2008 Optical Society of America.Item Open Access Laser-micromachined millimeter-wave photonic band-gap cavity structures(American Institute of Physics, 1995) Özbay, Ekmel; Tuttle, G.; McCalmont, J. S.; Sigalas, M.; Biswas, R.; Soukoulis, C. M.; Ho, K. M.We have used laser-micromachined alumina substrates to build a three-dimensional photonic band-gap crystal. The rod-based structure has a three-dimensional full photonic band gap between 90 and 100 GHz. The high resistivity of alumina results in a typical attenuation rate of 15 dB per unit cell within the band gap. By removing material, we have built defects which can be used as millimeter-wave cavity structures. The resulting quality ~Q! factors of the millimeter-wave cavity structures were as high as 1000 with a peak transmission of 10 dB below the incident signal. © 1995 American Institute of Physics.Item Open Access Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence(2013) Aas, S.; Müstecaplioǧlu O.E.We investigate optical bistability in a multilayer one-dimensional photonic crystal where the central layer is doped with Λ-type three-level atoms. We take into account the influence of spontaneously generated coherence when the lower atomic levels are sufficiently close to each other, in which case Kerr-type nonlinear response of the atoms is enhanced. We calculate the propagation of a probe beam in the defect mode window using the numerical nonlinear transfer matrix method. We find that Rabi frequency of a control field acting on the defect layer and the detuning of the probe field from the atomic resonance can be used to control the size and contrast of the hysteresis loop and the threshold of the optical bistability. In particular we find that at the optimal spontaneously generated coherence, a three orders of magnitude lower threshold can be achieved relative to the case without the coherence. © 2013 American Physical Society.Item Open Access Transmission properties of composite metamaterials in free space(American Institute of Physics, 2002) Bayındır, Mehmet; Aydin, K.; Özbay, Ekmel; Markoš, P.; Soukoulis, C. M.We propose and demonstrate a type of composite metamaterial which is constructed by combining thin copper wires and split ring resonators (SRRs) on the same board. The transmission measurements performed in free space exhibit a passband within the stop bands of SRRs and thin wire structures. The experimental results are in good agreement with the predictions of the transfer matrix method simulations. © 2002 American Institute of Physics.