Browsing by Subject "Toxicity Tests"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents(Institute of Physics Publishing, 2010) Bayram, C.; Mizrak, A.K.; Aktürk, S.; Kurşaklioǧlu H.; Iyisoy, A.; Ifran, A.; Denkbaş, E.B.316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test. © 2010 IOP Publishing Ltd.Item Unknown Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments(Royal Society of Chemistry, 2015) Balusamy, B.; Taştan, B. E.; Ergen, S. F.; Uyar, Tamer; Tekinay, T.This study demonstrates the acute toxicity of lanthanum oxide nanoparticles (La2O3 NP) on two sentinel aquatic species, fresh-water microalgae Chlorella sp. and the crustacean Daphnia magna. The morphology, size and charge of the nanoparticles were systematically studied. The algal growth inhibition assay confirmed absence of toxic effects of La2O3 NP on Chlorella sp., even at higher concentration (1000 mg L-1) after 72 h exposure. Similarly, no significant toxic effects were observed on D. magna at concentrations of 250 mg L-1 or less, and considerable toxic effects were noted in higher concentrations (effective concentration [EC50] 500 mg L-1; lethal dose [LD50] 1000 mg L-1). In addition, attachment of La2O3 NP on aquatic species was demonstrated using microscopy analysis. This study proved to be beneficial in understanding acute toxicity in order to provide environmental protection as part of risk assessment strategies.