BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Titanium oxides"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of electrical characteristics and magnetic field dependences of YBCO step edge and bicrystal grain boundary junctions for rf-SQUID applications
    (Institute of Physics, 2004) Fardmanesh, M.; Schubert, J.; Akram, R.; Bick, M.; Banzet, M.; Zander, W.; Zhang, Y.; Krause, H-J.
    The dc characteristics and magnetic field dependences of Y-Ba-Cu-O bicrystal grain boundary junctions (BGBJs) and step edge junctions (SEJs) were investigated for fabrication of rf-SQUIDs. Test junctions with up to 8 μm widths as well as the junctions of the two types of junction-based rf-SQUID were studied. The SEJs typically showed lower Jc and higher ρN as compared to the BGBJs, resulting in close IcRN products. All the BGBJs showed classical field dependent Ic following their junction width, resembling Fraunhofer patterns. The field sensitivity of the BGBJs' Uc led to low yield submicron BGBJ rf-SQUIDs partially impaired by the Earth's magnetic field. Two major behaviours of low and high field dependences of Ic were observed for the SEJs. Only the low field-sensitive SEJs resulted in micron size junction rf-SQUIDs not impaired by the Earth's magnetic field. The low field-sensitive SEJs led to low I/f noise magnetically stable rf-SQUIDs appropriate for applications in unshielded environments at 77 K.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Differentiation of domains in composite surface structures by charge-contrast x-ray photoelectron spectroscopy
    (2007) Süzer, Şefik; Dâna, A.; Ertas, G.
    An external bias is applied to two samples containing composite surface structures, while recording an XPS spectrum. Altering the polarity of the bias affects the extent of differential charging in domains that are chemically or electronically different to create a charge contrast. By utilizing this charge contrast, we show that two distinct silicon nitride and silicon oxynitride domains are present in one of the composite samples. Similarly, we use this technique to show that titanium oxide and silicon oxide domains exist as separate chemical entities in another composite sample. © 2007 American Chemical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nature of the Ti-Ba interactions on the BaO/TiO2/Al 2O3 NOx storage system
    (2009) Andonova, S. M.; Şentürk, G. S.; Kayhan, E.; Ozensoy, E.
    A ternary oxide-based NO* storage material in the form of BaOZTiO2Zy-Al2O3 was synthesized and characterized. Thermally induced structural changes occurring on the surfaces of the TiO2Zy-Al2O3 and BaOZ TiO 2Zy-Al2O3 systems were studied in a comparative manner within 300-1273 K via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and BET surface area analysis. The surface acidity of the studied oxide systems was also investigated via pyridine adsorption monitored by in-situ Fourier transform infrared (FTIR) spectroscopy. BaO/TiO2γ-Al 2O3 ternary oxide was synthesized by incorporating different loadings of (8-20 wt %) BaO onto the TiO2/γ Al 2O3 support material, which was originally prepared using the sol-gel method. In the TiO2Zy-Al2O3 binary oxide support material, anatase phase exhibited a relatively high thermal stability at T < 1073 K. The presence of TiO2 domains on the surface of the alumina particles was found to alter the surface acidity of alumina by providing new medium-strength Lewis acid sites. SEMZEDX results indicate that in the BaO/TiO2γ-Al2O3 system, TiO2 domains present a significant affinity toward BaO and/or Ba(NO3) 2 resulting in a strong Ti-Ba interaction and the formation of overlapping domains on the surface. The presence of TiO2 also leads to a decrease in the decomposition temperature of the Ba(N03) 2 phase with respect to the Ti-free Ba(N03) 2ZyAl2O3 system. Such a destabilization is likely to occur due to a weaker interaction between Ba(N03) 2 and y-Al203 domains in the ternary oxide as well as due to the change in the surface acidity in the presence of TiO 2. At relatively high temperatures (e.g., 873-1273 K) formation of complex structures in the form of BaTiO3, Ba1.23Al 2.46Ti5.54O16, BaTiO5, andor Ba x:AlyTizOn., were also observed. © 2009 American Chemical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photocatalytic conversion of nitric oxide on titanium dioxide: cryotrapping of reaction products for online monitoring by mass spectrometry
    (American Chemical Society, 2016) Lu, W.; Olaitan, A. D.; Brantley, M. R.; Zekavat, B.; Erdogan, D. A.; Ozensoy, E.; Solouki, T.
    Details of coupling a catalytic reaction chamber to a liquid nitrogen-cooled cryofocuser/triple quadrupole mass spectrometer for online monitoring of nitric oxide (NO) photocatalytic reaction products are presented. Cryogenic trapping of catalytic reaction products, via cryofocusing prior to mass spectrometry analysis, allows unambiguous characterization of nitrous oxide (N2O) and nitrogen oxide species (i.e., NO and nitrogen dioxide (NO2)) at low concentrations. Results are presented, indicating that the major photocatalytic reaction product of NO in the presence of titanium dioxide (TiO2) P25 and pure anatase catalysts when exposed to ultraviolet (UV) light (at a wavelength of 365 nm) is N2O. However, in the presence of rutile-rich TiO2 catalyst and UV light, the conversion of NO to N2O was less than 5% of that observed with the P25 or pure anatase TiO2 catalysts.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback