Browsing by Subject "Time varying systems"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access The effects of different inflation risk premiums on interest rate spreads(Elsevier BV, 2004) Berument, Hakan; Kilinc, Z.; Ozlale, U.This paper analyzes how the different types of inflation uncertainty affect a set of interest rate spreads for the UK. Three types of inflation uncertainty - structural uncertainty, impulse uncertainty, and steady-state inflation uncertainty - are defined and derived by using a time-varying parameter model with a GARCH specification. It is found that both the structural and steady-state inflation uncertainties increase interest rate spreads, while the empirical evidence for the impulse uncertainty is not conclusive. © 2003 Elsevier B.V. All rights reserved.Item Open Access Emergency crowd simulation for outdoor environments(Pergamon Press, 2010) Oğuz, O.; Akaydın, A.; Yilmaz, T.; Güdükbay, UğurWe simulate virtual crowds in emergency situations caused by an incident, such as a fire, an explosion, or a terrorist attack. We use a continuum dynamics-based approach to simulate the escaping crowd, which produces more efficient simulations than the agent-based approaches. Only the close proximity of the incident region, which includes the crowd affected by the incident, is simulated. We use a model-based rendering approach where a polygonal mesh is rendered for each agent according to the agent's skeletal motion. To speed up the animation and visualization, we employ an offline occlusion culling technique. We animate and render a pedestrian model only if it is visible according to the static visibility information computed. In the pre-processing stage, the navigable area is decomposed into a grid of cells and the from-region visibility of these cells is computed with the help of hardware occlusion queries. © 2009 Elsevier Ltd. All rights reserved.Item Open Access Interpolating between periodicity and discreteness through the fractional Fourier transform(IEEE, 2006) Özaktaş, H. M.; Sümbül, U.Periodicity and discreteness are Fourier duals in the same sense as operators such as coordinate multiplication and differentiation, and translation and phase shift. The fractional Fourier transform allows interpolation between such operators which gradually evolve from one member of the dual pair to the other as the fractional order goes from zero to one. Here, we similarly discuss the interpolation between the dual properties of periodicity and discreteness, showing how one evolves into the other as the order goes from zero to one. We also discuss the concepts of partial discreteness and partial periodicity and relate them to fractional discreteness and periodicity. © 2006 IEEE.Item Open Access Model based anticontrol of discrete-time systems(IEEE, 2003) Morgül, ÖmerWe will consider a model-based approach for the anticontrol of some discrete-time systems. We first assume the existence of a chaotic model in an appropriate form. Then by using an appropriate control input we try to match the controlled system with the chaotic system model.Item Open Access Optimal filtering in fractional Fourier domains(IEEE, 1995) Kutay, M. Alper; Onural, Levent; Özaktaş Haldun M.; Arıkan, OrhanThe ordinary Fourier transform is suited best for analysis and processing of time-invariant signals and systems. When we are dealing with time-varying signals and systems, filtering in fractional Fourier domains might allow us to estimate signals with smaller minimum-mean-square error (MSE). We derive the optimal fractional Fourier domain filter that minimizes the MSE for given non-stationary signal and noise statistics, and time-varying distortion kernel. We present an example for which the MSE is reduced by a factor of 50 as a result of filtering in the fractional Fourier domain, as compared to filtering in the conventional Fourier or time domains. We also discuss how the fractional Fourier transformation can be computed in O(N log N) time, so that the improvement in performance is achieved with little or no increase in computational complexity.Item Open Access Stability analysis of switched systems with time-varying discontinuous delays(IEEE, 2017) Mazenc, F.; Malisoff, M.; Özbay, HitayA new technique is proposed to ensure global asymptotic stability for nonlinear switched time-varying systems with time-varying discontinuous delays. It uses an adaptation of Halanay's inequality to switched systems and a recent trajectory based technique. The result is applied to a family of linear time-varying systems with time-varying delays.Item Open Access Strained band edge characteristics from hybrid density functional theory and empirical pseudopotentials: GaAs, GaSb, InAs and InSb(Institute of Physics Publishing Ltd., 2016) Çakan, A.; Sevik, C.; Bulutay, C.The properties of a semiconductor are drastically modified when the crystal point group symmetry is broken under an arbitrary strain. We investigate the family of semiconductors consisting of GaAs, GaSb, InAs and InSb, considering their electronic band structure and deformation potentials subject to various strains based on hybrid density functional theory. Guided by these first-principles results, we develop strain-compliant local pseudopotentials for use in the empirical pseudopotential method (EPM). We demonstrate that the newly proposed empirical pseudopotentials perform well close to band edges and under anisotropic crystal deformations. Using the EPM, we explore the heavy hole-light hole mixing characteristics under different stress directions, which may be useful in manipulating their transport properties and optical selection rules. The very low 5 Ry cutoff targeted in the generated pseudopotentials paves the way for large-scale EPM-based electronic structure computations involving these lattice mismatched constituents.