Browsing by Subject "Thin lens"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Fast and accurate algorithm for the computation of complex linear canonical transforms(Optical Society of America, 2010-08-05) Koç A.; Özaktaş, Haldun M.; Hesselink, L.A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include lossy systems such as Gaussian apertures, Gaussian ducts, or complex graded-index media, as well as lossless thin lenses and sections of free space and any arbitrary combinations of them. Complex-ordered fractional Fourier transforms (CFRTs) are a special case of CLCTs, and therefore a fast and accurate algorithm to compute CFRTs is included as a special case of the presented algorithm. The algorithm is based on decomposition of an arbitrary CLCT matrix into real and complex chirp multiplications and Fourier transforms. The samples of the output are obtained from the samples of the input in ∼N log N time, where N is the number of input samples. A space-bandwidth product tracking formalism is developed to ensure that the number of samples is information-theoretically sufficient to reconstruct the continuous transform, but not unnecessarily redundant.Item Open Access Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals(Optical Society of America, 2010-05-12) Koç A.; Özaktaş, Haldun M.; Hesselink, L.We report a fast and accurate algorithm for numerical computation of two-dimensional non-separable linear canonical transforms (2D-NS-LCTs). Also known as quadratic-phase integrals, this class of integral transforms represents a broad class of optical systems including Fresnel propagation in free space, propagation in gradedindex media, passage through thin lenses, and arbitrary concatenations of any number of these, including anamorphic/astigmatic/non- orthogonal cases. The general two-dimensional non-separable case poses several challenges which do not exist in the one-dimensional case and the separable two-dimensional case. The algorithm takes ∼ñ log ñ time, where ñ is the two-dimensional space-bandwidth product of the signal. Our method properly tracks and controls the space-bandwidth products in two dimensions, in order to achieve information theoretically sufficient, but not wastefully redundant, sampling required for the reconstruction of the underlying continuous functions at any stage of the algorithm. Additionally, we provide an alternative definition of general 2D-NS-LCTs that shows its kernel explicitly in terms of its ten parameters, and relate these parameters bidirectionally to conventional ABCD matrix parameters.Item Open Access Optical implementation of linear canonical transforms(Springer Verlag, 2016) Kutay, Mehmet Alper; Özaktaş, Haldun M.; Rodrigo, J. A.We consider optical implementation of arbitrary one-dimensional and two-dimensional linear canonical and fractional Fourier transforms using lenses and sections of free space. We discuss canonical decompositions, which are generalizations of common Fourier transforming setups. We also look at the implementation of linear canonical transforms based on phase-space rotators. © Springer International Publishing Switzerland 2016.