Browsing by Subject "Thin insulating film"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A near-infrared range photodetector based on indium nitride nanocrystals obtained through laser ablation(IEEE, 2014) Tekcan, B.; Alkis, S.; Alevli, M.; Dietz, N.; Ortac, B.; Bıyıklı, Necmi; Okyay, Ali KemalWe present a proof-of-concept photodetector that is sensitive in the near-infrared (NIR) range based on InN nanocrystals. Indium nitride nanocrystals (InN-NCs) are obtained through laser ablation of a high pressure chemical vapor deposition grown indium nitride thin film and are used as optically active absorption region. InN-NCs are sandwiched between thin insulating films to reduce the electrical leakage current. Under-1 V applied bias, the recorded photoresponsivity values within 600-1100-nm wavelength range are as high as (3.05 × 10-2) mA/W. An ultrathin layer of nanocrystalline InN thin film is, therefore, a promising candidate for NIR detection in large area schemes. © 2014 IEEE.Item Open Access A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation(Institute of Physics Publishing, 2012-10-18) Alkis, S.; Oruç, F. B.; Ortaç, B.; Koşger, A. C.; Okyay, Ali KemalWe present a proof-of-concept photodetector which is sensitive in the visible spectrum. Silicon nanocrystals (Si-NCs) obtained by laser ablation are used as the active absorption region. Si-NC films are formed from a polymeric dispersion. The films are sandwiched between thin insulating films to reduce the electrical leakage current. Furthermore, Ag nanoparticles are integrated with the photodetector to enhance the visible response using plasmonic effects. The measured photocurrent is resonantly enhanced, which is explained in terms of enhanced local fields caused by localized plasmons. The UV-vis spectrum of Ag nanoparticles is also measured to verify the resonance.