Browsing by Subject "Thermography (imaging)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access LWIR all-atomic layer deposition ZnO bilayer microbolometer for thermal imaging(SPIE, 2017) Poyraz, M.; Gorgulu, K.; Sisman, Z.; Tanrikulu, M. Y.; Okyay, Ali KemalWe propose an all-ZnO bilayer microbolometer, operating in the long-wave infrared regime that can be implemented by consecutive atomic layer deposition growth steps. Bilayer design of the bolometer provides very high absorption coefficients compared to the same thickness of a single ZnO layer. High absorptivity of the bilayer structure enables higher performance (lower noise equivalent temperature difference and time constant values) compared to single-layer structure. We observe these results computationally by conducting both optical and thermal simulations. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access Numerical analysis for remote identification of materials with magnetic characteristics(2011) Ege, Y.; Şensoy, M.G.; Kalender O.; Nazlibilek, S.There is a variety of methods used for remote sensing of objects such as acoustic, ground penetration radar detection, electromagnetic induction spectroscopy, infrared imaging, thermal neutron activation, core four-pole resonance, neutron backscattering, X-ray backscattering, and magnetic anomaly. The method that has to be used can be determined by the type of material, geographical location (underground or water), etc. Recent studies have been concentrated on the improvement of the criteria such as sensing distances, accuracy, and power consumption. In this paper, anomalies created by materials with magnetic characteristics at the perpendicular component of the Earth magnetic field have been detected by using a KMZ51 anisotropic magnetoresistive sensor with high sensitivity and low power consumption, and also, the effects of physical properties of materials on magnetic anomaly have been investigated. By analyzing the graphics obtained by 2-D motion of the sensor over the material, the most appropriate mathematical curves and formulas have been determined. Based on the physical properties of the magnetic material, the variations of the variables constituting the formulas of the curves have been analyzed. The contribution of this paper is the use of the results of these analyses for the purpose of identification of an unknown magnetic material. This is a new approach for the detection and determination of materials with magnetic characteristics by sensing the variation at the perpendicular component of the Earth magnetic field. The identification process has been explained in detail in this paper. © 2011 IEEE.