Browsing by Subject "Term weighting"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown Developing a text categorization template for Turkish news portals(IEEE, 2011) Toraman, Çağrı; Can, Fazlı; Koçberber, SeyitIn news portals, text category information is needed for news presentation. However, for many news stories the category information is unavailable, incorrectly assigned or too generic. This makes the text categorization a necessary tool for news portals. Automated text categorization (ATC) is a multifaceted difficult process that involves decisions regarding tuning of several parameters, term weighting, word stemming, word stopping, and feature selection. In this study we aim to find a categorization setup that will provide highly accurate results in ATC for Turkish news portals. We also examine some other aspects such as the effects of training dataset set size and robustness issues. Two Turkish test collections with different characteristics are created using Bilkent News Portal. Experiments are conducted with four classification methods: C4.5, KNN, Naive Bayes, and SVM (using polynomial and rbf kernels). Our results recommends a text categorization template for Turkish news portals and provides some future research pointers. © 2011 IEEE.Item Unknown A new approach to search result clustering and labeling(Springer, Berlin, Heidelberg, 2011) Türel, Anıl; Can, FazlıSearch engines present query results as a long ordered list of web snippets divided into several pages. Post-processing of retrieval results for easier access of desired information is an important research problem. In this paper, we present a novel search result clustering approach to split the long list of documents returned by search engines into meaningfully grouped and labeled clusters. Our method emphasizes clustering quality by using cover coefficient-based and sequential k-means clustering algorithms. A cluster labeling method based on term weighting is also introduced for reflecting cluster contents. In addition, we present a new metric that employs precision and recall to assess the success of cluster labeling. We adopt a comparative strategy to derive the relative performance of the proposed method with respect to two prominent search result clustering methods: Suffix Tree Clustering and Lingo. Experimental results in the publicly available AMBIENT and ODP-239 datasets show that our method can successfully achieve both clustering and labeling tasks. © 2011 Springer-Verlag Berlin Heidelberg.