A new approach to search result clustering and labeling

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
7
downloads

Citation Stats

Series

Abstract

Search engines present query results as a long ordered list of web snippets divided into several pages. Post-processing of retrieval results for easier access of desired information is an important research problem. In this paper, we present a novel search result clustering approach to split the long list of documents returned by search engines into meaningfully grouped and labeled clusters. Our method emphasizes clustering quality by using cover coefficient-based and sequential k-means clustering algorithms. A cluster labeling method based on term weighting is also introduced for reflecting cluster contents. In addition, we present a new metric that employs precision and recall to assess the success of cluster labeling. We adopt a comparative strategy to derive the relative performance of the proposed method with respect to two prominent search result clustering methods: Suffix Tree Clustering and Lingo. Experimental results in the publicly available AMBIENT and ODP-239 datasets show that our method can successfully achieve both clustering and labeling tasks. © 2011 Springer-Verlag Berlin Heidelberg.

Source Title

Information Retrieval Technology

Publisher

Springer, Berlin, Heidelberg

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Language

English