Browsing by Subject "Terahertz spectroscopy"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Comparison of terahertz technologies for detection and identification of explosives(SPIE, 2014-05) Beigang, R.; Biedron, S. G.; Dyjak, S.; Ellrich, F.; Haakestad, M.W.; Hübsch, D.; Kartaloglu, Tolga; Özbay, Ekmel; Ospald, F.; Palka, N.; Puc, U.; Czerwiñska, E.; Sahin, A. B.; Sešek, A.; Trontelj, J.; Švigelj, A.; Altan, H.; Van Rheenen, A.D.; Walczakowski, M.We present results on the comparison of different THz technologies for the detection and identification of a variety of explosives from our laboratory tests that were carried out in the framework of NATO SET-193 THz technology for stand-off detection of explosives: from laboratory spectroscopy to detection in the field under the same controlled conditions. Several laser-pumped pulsed broadband THz time-domain spectroscopy (TDS) systems as well as one electronic frequency-modulated continuous wave (FMCW) device recorded THz spectra in transmission and/or reflection. © 2014 SPIE.Item Open Access Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres(Elsevier, 2018) Humayun, M. H.; Khan, I.; Azeem, F.; Chaudhry, M. R.; Gökay, U. S.; Murib, M. S.; Serpengüzel, A.Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.Item Open Access Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process(Springer New York LLC, 2017) Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topallı, KağanThis paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations. © 2017, Springer Science+Business Media New York.Item Open Access Terahertz time-domain study of silver nanoparticles synthesized by laser ablation in organic liquid(IEEE Microwave Theory and Techniques Society, 2016-07) Koral, C.; Ortaç, B.; Altan, H.We report the investigation of laser-synthesized Ag nanoparticles (Ag-NPs) in an organic liquid environment by using terahertz time-domain spectroscopy (THz-TDS) technique. Colloidal Ag-NPs with an average diameter of 10 nm in two-propanol solution through nanosecond pulsed laser ablation were synthesized. THz-TDS measurements were performed on different volumetric concentration of Ag-NPs suspensions placed in 2-mm path length quartz cuvette. Due to the dispersive and highly absorptive nature of the nano liquids, an approach based on extracting the optical properties through the changes in amplitude and phase solely around the main peak of THz waveform is developed. This approach allowed for an accurate estimation of the complex refractive index of the Metallic-NPs suspension for the different prepared volumetric concentrations. In addition, using Maxwell-Garnett theory, the NP concentration is also extracted. This method shows that the time-domain nature of the THz pulse measurement technique is extremely useful in instances where slight variations in highly dispersive samples need to be investigated.