Browsing by Subject "Temporal characteristics"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Covariance matrix-based fire and flame detection method in video(Springer, 2011-09-17) Habiboğlu, Y. H.; Günay, O.; Çetin, A. EnisThis paper proposes a video-based fire detection system which uses color, spatial and temporal information. The system divides the video into spatio-temporal blocks and uses covariance-based features extracted from these blocks to detect fire. Feature vectors take advantage of both the spatial and the temporal characteristics of flame-colored regions. The extracted features are trained and tested using a support vector machine (SVM) classifier. The system does not use a background subtraction method to segment moving regions and can be used, to some extent, with non-stationary cameras. The computationally efficient method can process 320×240 video frames at around 20 frames per second in an ordinary PC with a dual core 2.2 GHz processor. In addition, it is shown to outperform a previous method in terms of detection performance.Item Open Access Flame detection method in video using covariance descriptors(IEEE, 2011) Habiboǧlu, Y.H.; Günay, Osman; Çetin, A. EnisVideo fire detection system which uses a spatio-temporal covariance matrix of video data is proposed. This system divides the video into spatio-temporal blocks and computes covariance features extracted from these blocks to detect fire. Feature vectors taking advantage of both the spatial and the temporal characteristics of flame colored regions are classified using an SVM classifier which is trained and tested using video data containing flames and flame colored objects. Experimental results are presented. © 2011 IEEE.Item Open Access Pose sentences: a new representation for action recognition using sequence of pose words(IEEE, 2008-12) Hatun, Kardelen; Duygulu, PınarWe propose a method for recognizing human actions in videos. Inspired from the recent bag-of-words approaches, we represent actions as documents consisting of words, where a word refers to the pose in a frame. Histogram of oriented gradients (HOG) features are used to describe poses, which are then vector quantized to obtain pose-words. As an alternative to bagof- words approaches, that only represent actions as a collection of words by discarding the temporal characteristics of actions, we represent videos as ordered sequence of pose-words, that is as pose sentences. Then, string matching techniques are exploited to find the similarity of two action sequences. In the experiments, performed on data set of Blank et al., 92% performance is obtained. © 2008 IEEE.Item Open Access Real-time wildfire detection using correlation descriptors(IEEE, 2011) Habiboğlu, Y. Hakan; Günay, Osman; Çetin, A. EnisA video based wildfire detection system that based on spatio-temporal correlation descriptors is developed. During the initial stages of wildfires smoke plume becomes visible before the flames. The proposed method uses background subtraction and color thresholds to find the smoke colored slow moving regions in video. These regions are divided into spatio-temporal blocks and correlation features are extracted from the blocks. Property sets that represent both the spatial and the temporal characteristics of smoke regions are used to form correlation descriptors. An SVM classifier is trained and tested with descriptors obtained from video data containing smoke and smoke colored objects. Experimental results are presented. © 2011 EURASIP.